Skip to main content
Log in

Implications on the origin of cosmic rays in light of 10 TV spectral softenings

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Precise measurements of the energy spectra of cosmic rays (CRs) show various kinds of features deviating from single power-laws, which give very interesting and important implications on their origin and propagation. Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons (and probably also for Helium nuclei). Very recently, the DArk Matter Particle Explorer (DAMPE) measurement about the proton spectrum clearly reveals such a softening with a high significance. Here we study the implications of these new measurements, as well as the groundbased indirect measurements, on the origin of CRs. We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously. In the framework of multiple components, we discuss two possible scenarios, the multiple source population scenario and the background plus nearby source scenario. Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies. Considering the anisotropy observations, the nearby source model is favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aguilar, et al., Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV_with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 117(23), 231102 (2016)

    Article  ADS  Google Scholar 

  2. A. D. Panov, et al., Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci. Phys. 73(5), 564 (2009), arXiv: 1101.3246

    Article  Google Scholar 

  3. H. S. Ahn, et al., Discrepant hardening observed in cosmic-ray elemental spectra, Astrophys. J. 714(1), L89 (2010), arXiv: 1004.1123

    Article  ADS  Google Scholar 

  4. O. Adriani, et al., PAMELA measurements of cosmic-ray proton and helium spectra, Science 332(6025), 69 (2011), 1103.4055

    Article  ADS  Google Scholar 

  5. M. Aguilar, et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 114(17), 171103 (2015)

    Article  ADS  Google Scholar 

  6. M. Aguilar, et al., Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 115(21), 211101 (2015)

    Article  ADS  Google Scholar 

  7. M. Aguilar, et al., Observation of the Identical Rigidity Dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 119(25), 251101 (2017)

    Article  ADS  Google Scholar 

  8. O. Adriani, et al., Direct measurement of the cosmic-ray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station, Phys. Rev. Lett. 122, 181102 (2019), arXiv: 1905.04229

    Article  ADS  Google Scholar 

  9. Y. Ohira and K. Ioka, Cosmic-ray helium hardening, Astrophys. J. 729(1), L13 (2011), arXiv: 1011.4405

    Article  ADS  Google Scholar 

  10. Q. Yuan B. Zhang and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011), arXiv: 1104.3357

    Article  ADS  Google Scholar 

  11. A. E. Vladimirov G. Jóhannesson I. V. Moskalenko and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012), arXiv: 1108.1023

    Article  ADS  Google Scholar 

  12. A. D. Erlykin and A. W. Wolfendale, A new component of cosmic rays? Astropart. Phys. 35(7), 449 (2012)

    Article  ADS  Google Scholar 

  13. S. Thoudam and J. R. Hörandel, Nearby supernova remnants and the cosmic ray spectral hardening at high energies, Mon. Not. R. Astron. Soc. 421(2), 1209 (2012), arXiv: 1112.3020

    Article  ADS  Google Scholar 

  14. G. Bernard T. Delahaye Y.-Y. Keum W. Liu P. Salati and R. Taillet, TeV cosmic-ray proton and helium spectra in the myriad model, Astron. Astrophys. 555, A48 (2013), arXiv: 1207.4670

    Article  Google Scholar 

  15. W. Liu X.-J. Bi S.-J. Lin B.-B. Wang and P.-F. Yin, Excesses of cosmic ray spectra from a single nearby source, Phys. Rev. D 96, 023006 (2017), arXiv: 1611.09118

    Article  ADS  Google Scholar 

  16. V. Ptuskin V. Zirakashvili and E. S. Seo, Spectra of cosmic-ray protons and helium produced in supernova remnants, Astrophys. J. 763(1), 47 (2013), arXiv: 1212.0381

    Article  ADS  Google Scholar 

  17. S. Thoudam and J. R. Hörandel, GeV-TeV cosmic-ray spectral anomaly as due to reacceleration by weak shocks in the galaxy, Astron. Astrophys. 567, A33 (2014), arXiv: 1404.3630

    Article  ADS  Google Scholar 

  18. Y. Zhang S. Liu and Q. Yuan, Anomalous distributions of primary cosmic rays as evidence for time-dependent particle acceleration in Supernova remnants, Astrophys. J. Lett. 844, L3 (2017), arXiv: 1707.00262

    Article  ADS  Google Scholar 

  19. N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. 752(1), L13 (2012), 1204.4492

    Article  ADS  Google Scholar 

  20. P. Blasi E. Amato and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012), 1207.3706

    Article  ADS  Google Scholar 

  21. N. Tomassetti and F. Donato, The connection between the positron fraction anomaly and the spectral features in galactic cosmic-ray hadrons, Astrophys. J. Lett. 803, L15 (2015), arXiv: 1502.06150

    Article  ADS  Google Scholar 

  22. A. M. Taylor and G. Giacinti, Cosmic rays in a galactic breeze, Phys. Rev. D 95, 023001 (2017), arXiv: 1607.08862

    Article  ADS  Google Scholar 

  23. C. Jin Y. Q. Guo and H. B. Hu, Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02, Chin. Phys. C 40, 015101 (2016), arXiv: 1504.06903

    Article  ADS  Google Scholar 

  24. Y. Q. Guo Z. Tian and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of $p/p$, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016)

    Article  ADS  Google Scholar 

  25. Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of galactic cosmic rays and Fermi diffuse gamma-rays with spatially-dependent propagation, Phys. Rev. D 97, 063008 (2018), arXiv: 1801.05904

    Article  ADS  Google Scholar 

  26. W. Liu Y. H. Yao and Y. Q. Guo, Revisiting spatial-dependent propagation model with latest observations of cosmic ray nuclei, Astrophys. J. 869, 176 (2018), arXiv: 1802.03602

    Article  ADS  Google Scholar 

  27. M. Aguilar, et al., Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 120(2), 021101 (2018)

    Article  ADS  Google Scholar 

  28. Y. Génolini, et al., Indications for a high-rigidity break in the cosmic-ray diffusion coefficient, Phys. Rev. Lett. 119, 241101 (2017), arXiv: 1706.09812

    Article  ADS  Google Scholar 

  29. Q. Yuan C. R. Zhu X. J. Bi and D. M. Wei, Secondary cosmic ray nucleus spectra strongly favor reacceleration of particle transport in the Milky Way, arXiv: 1810.03141 (2018)

  30. J. S. Niu T. Li and H. F. Xue, Bayesian analysis of the hardening in AMS-02 nuclei spectra, arXiv: 1810.09301(2018)

  31. Y. S. Yoon, et al., Proton and Helium Spectra from the CREAM-III Flight, Astrophys. J. 839, 5 (2017), arXiv: 1704.02512

    Article  ADS  Google Scholar 

  32. E. Atkin, et al., A new universal cosmic-ray knee near the magnetic rigidity 10 TV with the NUCLEON space observatory, Soviet J. Exp. Theor. Phys. Lett. 108, 5 (2018), arXiv: 1805.07119

    Article  Google Scholar 

  33. J. Chang, Dark matter particle explorer: The first Chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. (Kongjian Kexue Xuebao) 34, 550 (2014)

    Article  Google Scholar 

  34. J. Chang, et al., The Dark matter particle explorer mission, Astropart. Phys. 95, 6 (2017), arXiv: 1706.08453

    Article  ADS  Google Scholar 

  35. Q. An, et al., Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5, eaax3793 (2019), arXiv: 1909.12860

    Article  ADS  Google Scholar 

  36. T. Antoni, et al. (KASCADE Collaboration), KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24, 1 (2005), arXiv: astro-ph/0505413

    Article  ADS  Google Scholar 

  37. E. E. Korosteleva V. V. Prosin L. A. Kuzmichev and G. Navarra, Measurement of cosmic ray primary energy with the atmospheric Cherenkov light technique in extensive air showers, Nucl. Phys. B Proc. Suppl. 165, 74 (2007)

    Article  ADS  Google Scholar 

  38. M. Amenomori, et al., The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array, Astrophys. J. 678(2), 1165 (2008), 0801.1803

    Article  ADS  Google Scholar 

  39. A. P. Garyaka R. M. Martirosov S. V. Ter-Antonyan A. D. Erlykin N. M. Nikolskaya Y. A. Gallant L. W. Jones and J. Procureur, An all-particle primary energy spectrum in the 3–200 PeV energy range, J. Phys. G Nucl. Phys. 35(11), 115201 (2008), 0808.1421

    Article  ADS  Google Scholar 

  40. M. Amenomori, et al. (Tibet As-gamma Collaboration), Are protons still dominant at the knee of the cosmic-ray energy spectrum? Phys. Lett. B 632, 58 (2006), arXiv: astro-ph/0511469

    Article  ADS  Google Scholar 

  41. B. Bartoli, et al., The knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO, Phys. Rev. D 92, 092005 (2015), arXiv: 1502.03164

    Article  ADS  Google Scholar 

  42. J. C. Arteaga-Velazquez and J. D. Alvarez, The spectrum of the light component of TeV cosmic rays measured with HAWC, Proceedings of Science ICRC 2019, 176 (2019)

    ADS  Google Scholar 

  43. W. D. Apel, et al., KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)

    Article  ADS  Google Scholar 

  44. B. Bartoli, et al. (ARGO-YBJ Collaboration), The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3–300 TeV, Phys. Rev. D 91, 112017 (2015), arXiv: 1503.07136

    Article  ADS  Google Scholar 

  45. J. R. Hörandel, On the knee in the energy spectrum of cosmic rays, Astropart. Phys. 19, 193 (2003), arXiv: astro-ph/0210453

    Article  ADS  Google Scholar 

  46. V. I. Zatsepin and N. V. Sokolskaya, Three component model of cosmic ray spectra from 10 GeV to 100 PeV, Astron. Astrophys. 458(1), 1 (2006), arXiv: astroph/0601475

    Article  ADS  Google Scholar 

  47. A. M. Hillas, Cosmic rays: Recent progress and some current questions, arXiv: astro-ph/0607109 (2006)

  48. T. K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio, Astropart. Phys. 35(12), 801 (2012), arXiv: 1111.6675

    Article  ADS  Google Scholar 

  49. T. K. Gaisser T. Stanev and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. 8(6), 748 (2013), arXiv: 1303.3565

    Article  ADS  Google Scholar 

  50. S. Thoudam J. P. Rachen A. van Vliet A. Achterberg S. Buitink H. Falcke and J. R. Hörandel, Cosmic-ray energy spectrum and composition up to the ankle — the case for a second Galactic component, Astron. Astrophys. 595, A33 (2016), arXiv: 1605.03111

    Article  ADS  Google Scholar 

  51. Y. Q. Guo and Q. Yuan, On the knee of galactic cosmic rays in light of sub-TeV spectral hardenings, Chin. Phys. C 42, 075103 (2018), arXiv: 1701.07136

    Article  ADS  Google Scholar 

  52. A. D. Erlykin and A. W. Wolfendale, A single source of cosmic rays in the range — eV, J. Phys. G Nucl. Phys. 23(8), 979 (1997)

    Article  ADS  Google Scholar 

  53. L. G. Sveshnikova O. N. Strelnikova and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV-PeV-energies and contribution of nearby sources, Astropart. Phys. 50, 33 (2013), 1301.2028

    Article  ADS  Google Scholar 

  54. V. Savchenko M. Kachelrieß and D. V. Semikoz, Imprint of a 2 Myr old source on the cosmic ray anisotropy, Astrophys. J. Lett. 809, L23 (2015), arXiv: 1505.02720

    Article  ADS  Google Scholar 

  55. W. Liu Y.-Q. Guo and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019), arXiv: 1812.09673

    Article  ADS  Google Scholar 

  56. X. B. Qu, Understanding the galactic cosmic ray dipole anisotropy with a nearby single source under the spatially-dependent propagation scenario, arXiv: 1901.00249 (2019)

  57. B. Q. Qiao W. Liu Y. Q. Guo and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 12, 007 (2019), arXiv: 1905.12505

    Article  ADS  Google Scholar 

  58. D. Karmanov I. Kovalev I. Kudryashov A. Kurganov V. Latonov A. Panov D. Podorozhnyy and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)

  59. Y. S. Yoon, et al., Cosmic-ray proton and helium spectra from the first cream flight, Astrophys. J. 728(2), 122 (2011), arXiv: 1102.2575

    Article  ADS  Google Scholar 

  60. P. Lipari and S. Vernetto, The shape of the cosmic ray proton spectrum, arXiv: 1911.01311 (2019)

  61. H. S. Ahn, et al., Energy spectra of cosmic-ray nuclei at high energies, Astrophys. J. 707(1), 593 (2009), arXiv: 0911.1889

    Article  ADS  Google Scholar 

  62. M. Aglietta, et al., A measurement of the solar and sidereal cosmic-ray anisotropy at E0 approximately 1014 eV, Astrophys. J. 470, 501 (1996)

    Article  ADS  Google Scholar 

  63. M. Amenomori, et al., Anisotropy and corotation of galactic cosmic rays, Science 314(5798), 439 (2006), arXiv: astro-ph/0610671

    Article  ADS  Google Scholar 

  64. M. Aglietta, et al., Evolution of the cosmic-ray anisotropy above 1014 eV, Astrophys. J. 692(2), L130 (2009), arXiv: 0901.2740

    Article  ADS  Google Scholar 

  65. M. G. Aartsen, et al. (IceCube Collaboration), Anisotropy in cosmic-ray arrival directions in the southern hemisphere with six years of data from the Ice-Cube Detector, Astrophys. J. 826, 220 (2016), arXiv: 1603.01227

    Article  ADS  Google Scholar 

  66. M. Amenomori, et al. (Tibet AS-gamma Collaboration), Northern sky galactic cosmic ray anisotropy between 10-1000 TeV with the Tibet air shower array, Astrophys. J. 836, 153 (2017), arXiv: 1701.07144

    Article  ADS  Google Scholar 

  67. X. Bai, et al., The large high altitude air shower observatory (LHAASO) science white paper, arXiv: 1905.02773 (2019)

  68. S. N. Zhang, et al. (HERD Collaboration), The high energy cosmic-radiation detection (HERD) facility onboard China’s future space station, in: Proc. SPIE 9144, 91440X (2014), arXiv: 1407.4866

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0400200), the National Natural Science Foundation of China (Nos. 11722328, 11525313, U1738205, and 11851305), and the 100 Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Yuan or Yi-Zhong Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Ma, PX., Yuan, Q. et al. Implications on the origin of cosmic rays in light of 10 TV spectral softenings. Front. Phys. 15, 24601 (2020). https://doi.org/10.1007/s11467-019-0946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0946-8

Keywords

Navigation