Skip to main content
Log in

Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We demonstrated a novel metamaterial with dual-band electromagnetically induced transparency (EIT) via simulation, experiment and numerical analysis, with resonance frequencies of the transparency peaks of 7.60 and 10.27 GHz. The E-ε metamaterial unit cells were composed of E-shaped and ε-shaped patterns. By analyzing the surface current distribution and the magnetic field, we qualitatively verified the toroidal dipole response in the E-ε metamaterial at 10.27 GHz. Meanwhile, by calculating the multipole’s radiated power, we found that the two transparency peaks were due to the excitation of the electric and toroidal dipole responses. By changing the incident angle from 0° to 60°, we observed changes in transmission spectra, and the quality factors (Q-factors) of the two transparency peaks increased. In addition, the proposed E metamaterial can be designed to act as a refractive index sensor or other electronic equipment for the control of electromagnetic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China 5(3), 291 (2010)

    Article  ADS  Google Scholar 

  2. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, Wire metamaterials: Physics and applications, Adv. Mater. 24(31), 4229 (2012)

    Article  Google Scholar 

  3. Z. Shen, H. Yang, X. Huang, and Z. Yu, Design of negative refractive index metamaterial with water droplets using, J. Opt. 19(11), 115101 (2017)

    Article  ADS  Google Scholar 

  4. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. Au Kong, Left-handed materials composed of only S-shaped resonators, Phys. Rev. E 70(5), 057605 (2004)

    Article  ADS  Google Scholar 

  5. Z. Shen, X. Huang, H. Yang, T. Xiang, C. Wang, Z. Yu, and J. Wu, An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water, J. Appl. Phys. 123(22), 225106 (2018)

    Article  ADS  Google Scholar 

  6. G. Y. Song, W. X. Jiang, Q. Cheng, L. T. Wu, H. Y. Dong, and T. J. Cui, Acoustic magnifying lens for far-field high resolution imaging based on transformation acoustics, Adv. Mater. Technol. 2(9), 1700089 (2017)

    Article  Google Scholar 

  7. Z. L. Mei and T. J. Cui, Transparent shells-invisible to electromagnetic waves, Prog. Electromagn. Res. B 18, 149 (2009)

    Article  Google Scholar 

  8. S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber, J. Phys. D Appl. Phys. 48(21), 215101 (2015)

    Article  ADS  Google Scholar 

  9. J. Wu, P. Wang, X. J. Huang, F. Rao, X. Y. Chen, Z. Y. Shen, and H. L. Yang, Design and validation of liquid permittivity sensor based on RCRR microstrip metamaterial, Sens. Actuators A Phys. 280, 222 (2018)

    Article  Google Scholar 

  10. M. Kraft, Y. Luo, S. A. Maier, and J. B. Pendry, Designing plasmonic gratings with transformation optics, Phys. Rev. X 5(3), 031029 (2015)

    Google Scholar 

  11. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding, ACS Nano 6(7), 6492 (2012)

    Article  Google Scholar 

  12. Y. Y. Fu, Y. D. Xu, and H. Y. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)

    Article  ADS  Google Scholar 

  13. K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, Toroidal metamaterial, New J. Phys. 9(9), 324 (2007)

    Article  ADS  Google Scholar 

  14. I. B. Zel’dovich, Electromagnetic interaction with parity violation, Sov. J. Exp. Theor. Phys. 6, 1184 (1958)

    ADS  Google Scholar 

  15. A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, Extremely high Q-factor metamaterials due to anapole excitation, Phys. Rev. B 95(3), 035104 (2017)

    Article  ADS  Google Scholar 

  16. H. Jiang, W. Zhao, and Y. Jiang, Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet, Opt. Mater. Express 7(12), 4277 (2017)

    Article  ADS  Google Scholar 

  17. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, Electromagnetic toroidal excitations in matter and free space, Nat. Mater. 15(3), 263 (2016)

    Article  ADS  Google Scholar 

  18. T. Xiang, T. Lei, S. Hu, J. Chen, X. Huang, and H. Yang, Resonance transparency with low-loss in toroidal planar metamaterial, J. Appl. Phys. 123(9), 095104 (2018)

    Article  ADS  Google Scholar 

  19. S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)

    Article  ADS  Google Scholar 

  20. M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, Tailoring mode interference in plasmon-induced transparency metamaterials, J. Phys. D Appl. Phys. 51(17), 174005 (2018)

    Article  ADS  Google Scholar 

  21. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, Electromagnetically induced transparency in metamaterials at near-infrared frequency, Opt. Express 18(16), 17187 (2010)

    Article  ADS  Google Scholar 

  22. W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles, Adv. Mater. 28(14), 2709 (2016)

    Article  Google Scholar 

  23. Z. Y. Shen, T. Y. Xiang, J. Wu, Z. T. Yu, and H. L. Yang, Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial, J. Magn. Magn. Mater. 476, 69 (2019)

    Article  ADS  Google Scholar 

  24. T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal — graphene metamaterial, J. Phys. D Appl. Phys. 51(41), 415105 (2018)

    Article  ADS  Google Scholar 

  25. Z. Y. Shen, T. Y. Xiang, N. Wu, J. Wu, Y. Tian, and H. L. Yang, Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials, J. Phys. D Appl. Phys. 52(1), 015003 (2019)

    Article  ADS  Google Scholar 

  26. S. Hu, D. Liu, and H. L. Yang, Electromagnetically induced transparency in an integrated metasurface based on bright-dark-bright mode coupling, J. Phys. D Appl. Phys. 52(17), 175305 (2019)

    Article  ADS  Google Scholar 

  27. J. Zhang and A. Zayats, Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures, Opt. Express 21(7), 8426 (2013)

    Article  ADS  Google Scholar 

  28. V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials, Sci. Rep. 3(1), 2967 (2013)

    Article  ADS  Google Scholar 

  29. L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)

    Article  ADS  Google Scholar 

  30. S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials, Ann. Phys. 528(5), 352 (2016)

    Article  Google Scholar 

  31. M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, Sharp toroidal resonances in planar terahertz metasurfaces, Adv. Mater. 28(37), 8206 (2016)

    Article  Google Scholar 

  32. L. Zhu, L. Dong, J. Guo, F. Meng, J. He, C. H. Zhao, and Q. Wu, A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles, RSC Advances 7(88), 55897 (2017)

    Article  ADS  Google Scholar 

  33. L. Cong, V. Savinov, Y. K. Srivastava, S. Han, and R. Singh, A metamaterial analog of the Ising model, Adv. Mater. 30(40), 1804210 (2018)

    Article  Google Scholar 

  34. M. Gupta, Y. K. Srivastava, and R. Singh, A toroidal metamaterial switch, Adv. Mater. 30(4), 1704845 (2018)

    Article  Google Scholar 

  35. Y. Tian, S. Hu, X. J. Huang, Z. T. Yu, H. Lin, and H. L. Yang, Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing, J. Phys. D Appl. Phys. 50(40), 405105 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61741104 and 61701206), the Self-determined Research Funds of Central China Normal University from the Colleges’ Basic Research and Operation of Ministry of Education of China (Grant Nos. CCNU18GF004 and CCNU18JCXK02), and the Funding for Basic Scientific Research Business of Central Universities (Innovation Funding Project) (Grant No. 2018CXZZ116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Lin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, ZY., Yang, HL., Liu, X. et al. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response. Front. Phys. 15, 12601 (2020). https://doi.org/10.1007/s11467-019-0928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0928-x

Keywords

Navigation