Skip to main content

Advertisement

Log in

Paving the way towards universal treatment with allogenic T cells

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

With several different CAR T cell therapies under advanced phases of clinical trials, and the first FDA-approved CAR treatments in 2017 (Yescarta and Kymriah), CAR T cell therapy has become one of the most promising therapies for the treatment of certain types of cancer. This success has bred an opportunity to optimize the production of CAR T cells for easier patient access. CAR T cell therapy is a rather expensive and personalized process that requires expensive measures to collect cells from patients, engineer those cells, and re-infuse the cells into the patient with adequate quality controls at each phase. With this in mind, significant attempts at creating a “universal” CAR T cell are underway in order to create an “off-the-shelf” product that would reduce the expense and time required for traditional CAR T cell treatment. The primary obstacle facing this endeavor is avoiding graft-versus-host disease that accompanies allogeneic transplants between genetically dissimilar individuals. With the advent of CRISPR and TALEN technology, editing the genome of allogeneic cells has become very possible, and several groups have provided initial data analyzing the effects of CAR T cells that have been edited to avoid host rejection and avoid endogenous TCR alloreactivity. These engineered cells not only have to avoid GVHD but also have to retain their anti-tumor efficacy in vivo. Here, we expand on the recent efforts and strides that have been made in the design and testing of universal allogeneic CAR T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Finney HM, Akbar AN, Lawson ADG. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol [Internet]. 2004;172:104–13 [cited 2018 Jun 25] Available from: http://www.ncbi.nlm.nih.gov/pubmed/14688315.

    CAS  PubMed  Google Scholar 

  2. Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol [Internet]. 1998;161:2791–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9743337.

    CAS  PubMed  Google Scholar 

  3. Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res [Internet]. BioMed Central. 2018;37:163 [cited 2018 Nov 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/30031396.

    Google Scholar 

  4. Lazarus HM, Laughlin MJ. The HLA dictionary 2008: a summary of HLA-A, -B, -C, -DRB1/3/4/5, and -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR, and -DQ antigens. Contemp Hematol. 2010;73:95–170.

    Google Scholar 

  5. Lazarus HM, Laughlin MJ. Pathogen-driven selection and worldwide HLA class I diversity. Contemp Hematol. 2010;15:1022–7.

    Google Scholar 

  6. Bosi A, Bartolozzi B, Guidi S. Allogeneic stem cell transplantation. Transplant Proc [Internet]. Elsevier. 2005;37:2667–9 [cited 2018 Sep 6] Available from: https://www.sciencedirect.com/science/article/pii/S0041134505007232.

    CAS  Google Scholar 

  7. Allogeneic stem cell transplantation [Internet]. Available from: www.springer.com/7861. Accessed 6 Sep 2018.

  8. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation [Internet]. 1974;18:295–304 [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/4153799.

    CAS  Google Scholar 

  9. Vigorito AC, Campregher PV, Storer BE, Carpenter PA, Moravec CK, Kiem H-P, et al. Evaluation of NIH consensus criteria for classification of late acute and chronic GVHD. Blood [Internet]. American Society of Hematology. 2009;114:702–8 [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19470693.

    CAS  Google Scholar 

  10. GVHD Signs And Symptoms | Be The Match [Internet]. [cited 2018 Sep 6]. Available from: https://bethematch.org/patients-and-families/life-after-transplant/physical-health-and-recovery/gvhd-signs-and-symptoms/

  11. Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg F, Vossen J, et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med [Internet]. Massachusetts Medical Society. 1996;334:281–5 [cited 2018 Sep 6] Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199602013340501.

    CAS  Google Scholar 

  12. Mutis T, Gillespie G, Schrama E, Falkenburg JHF, Moss P, Goulmy E, et al. Class I–minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med [Internet]. Nature Publishing Group. 1999;5:839–42 [cited 2018 Sep 6]Available from: http://www.nature.com/articles/nm0799_839.

  13. Reinsmoen NL, Kersey JH, Bach FH. Detection of HLA restricted anti-minor histocompatibility antigen(s) reactive cells from skin GVHD lesions. Hum Immunol [Internet]. Elsevier; 1984; 11:249–257. [cited 2018 Sep 6] Available from: https://www.sciencedirect.com/science/article/pii/0198885984900648

  14. Spierings E, Kim Y-H, Hendriks M, Borst E, Sergeant R, Canossi A, et al. Multicenter Analyses demonstrate significant clinical effects of minor histocompatibility antigens on GvHD and GvL after HLA-matched related and unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant [Internet]. Elsevier. 2013;19:1244–53 [cited 2018 Sep 6] Available from: https://www.sciencedirect.com/science/article/pii/S1083879113002358.

    CAS  Google Scholar 

  15. Minor hisotcompatibility antigens [Internet]. [cited 2020 Dec 6]. Available from: https://www.genenames.org/data/genegroup/#!/group/870

  16. Griffioen M, Van Bergen CAM, Falkenburg JHF. Autosomal minor histocompatibility antigens: how genetic variants create diversity in immune targets. Front Immunol. 2016;7:1–9.

    Google Scholar 

  17. Topham NJ, Hewitt EW. Natural killer cell cytotoxicity: how do they pull the trigger? Immunology [Internet]. Wiley-Blackwell. 2009;128:7–15 [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19689731.

    CAS  Google Scholar 

  18. Rees RC. MHC restricted and non-restricted killer lymphocytes. Blood Rev [Internet]. 1990;4:204–10 [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/2245257.

    CAS  Google Scholar 

  19. Tu MM, Mahmoud AB, Makrigiannis AP. Licensed and unlicensed NK Cells: differential roles in cancer and viral control. Front Immunol [Internet]. Frontiers Media SA. 2016;7:166 [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/27199990.

    Google Scholar 

  20. Thomas LM, Peterson ME, Long EO. Adhesion to target cells cutting edge: NK cell licensing modulates. 2018 [cited 2018 Sep 6]; Available from: http://www.jimmunol.org/content/191/8/3981

  21. Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood [Internet]. American Society of Hematology. 2013;122:1341–9 [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23741009.

    CAS  Google Scholar 

  22. Lazarus HM, Laughlin MJ. Donor APCs are required for maximal GVHD but not for GVL. Contemp Hematol. 2010;10:987–92.

    Google Scholar 

  23. Lazarus HM, Laughlin MJ. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Contemp Hematol [Internet]. 2010;285:412–5 Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.285.5426.412.

    Google Scholar 

  24. Lazarus HM, Laughlin MJ. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Contemp Hematol [Internet]. 2010;8:575–81 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12042807.

    Google Scholar 

  25. Lazarus HM, Laughlin MJ. The danger model: e renewed sense of self. Contemp Hematol. 2010;296:301–5.

    Google Scholar 

  26. Lazarus HM, Laughlin MJ. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Contemp Hematol. 2010;11:1244–9.

    Google Scholar 

  27. Lazarus HM, Laughlin MJ. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Contemp Hematol [Internet]. 2010;95:2754–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10779417.

    Google Scholar 

  28. Lazarus HM, Laughlin MJ. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Contemp Hematol [Internet]. 2010;90:3204–13 Available from: http://bloodjournal.hematologylicontent/content/90/8/3204%5Cn http://bloodjournal.hematologylicontent/content/90/8/3204.full.pdf.

  29. Alegre M-L, Fadi G, Lakkis M, Morelli AE. Antigen presentation in transplantation. Trends Immunol [Internet]. 2016;37:831–43 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135637/pdf/nihms818257.pdf.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dustin ML. Role of adhesion molecules in activation signaling in T lymphocytes. J Clin Immunol [Internet]. 2001;21:258–63 [cited 2018 Jun 29] Available from: http://www.ncbi.nlm.nih.gov/pubmed/11506195.

    CAS  PubMed  Google Scholar 

  31. Lazarus HM, Laughlin MJ. The role of donor T cells for target organ injuries in acute and chronic graft-versus-host disease. Contemp Hematol. 2010;103:310–8.

    Google Scholar 

  32. Epstein FH, Ferrara JLM, Deeg HJ. Graft-versus-host disease. N Engl J Med [Internet]. Massachusetts Medical Society. 1991;324:667–74 [cited 2018 Jun 29] Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199103073241005.

    Google Scholar 

  33. Lazarus HM, Laughlin MJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Contemp Hematol [Internet]. 2010;25:139–70 Available from: http://www.annualreviews.org/doi/10.1146/annurev.immunol.25.022106.141606.

    Google Scholar 

  34. Lazarus HM, Laughlin MJ. Transplantation immunology: solid organ and bone marrow. Contemp Hematol [Internet]. Elsevier Ltd. 2010;125:S324–35. https://doi.org/10.1016/j.jaci.2009.11.014.

    Article  Google Scholar 

  35. Basić-Jukić N, Labar B. Immunosuppressive drugs in the prevention and treatment of GVHD after allogenic bone marrow transplantation. Acta Med Croatica [Internet]. 2003 [cited 2018 Jun 29];57:131–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12879693.

  36. Lazarus HM, Laughlin MJ. Treatment and management of graft-versus-host disease: improving response and survival. Contemp Hematol. 2010;4:366–78.

    Google Scholar 

  37. Lazarus HM, Laughlin MJ. Graft-versus-host disease. Contemp Hematol. 2010;373:1550–61.

    Google Scholar 

  38. Figueiredo C, Wedekind D, Müller T, Vahlsing S, Horn PA, Seltsam A, et al. MHC universal cells survive in an allogeneic environment after incompatible transplantation. Biomed Res Int [Internet]. Hindawi. 2013;2013:796046 [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24350288.

    Google Scholar 

  39. American Association of Immunologists, Meissner T, Strominger J, Cowan C. The universal donor stem cell: removing the immune barrier to transplantation using CRISPR/Cas9 [Internet]. J. Immunol. Williams & Wilkins. 1950; [cited 2018 Sep 19]. Available from: http://www.jimmunol.org/content/194/1_Supplement/140.28.

  40. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EGA, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood [Internet]. American Society of Hematology. 2006;108:2114–20 [cited 2018 Sep 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/10828053.

    CAS  Google Scholar 

  41. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood [Internet]. 2007;110:3499–506 [cited 2018 Sep 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17664353.

    CAS  PubMed  Google Scholar 

  42. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol [Internet]. 2002;30:42–8 [cited 2018 Nov 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/11823036.

    Google Scholar 

  43. Atoui R, Shum-Tim D, Chiu RCJ. Myocardial regenerative therapy: immunologic basis for the potential “universal donor cells” the proliferating sources of stem cells. 2008 [cited 2018 Nov 28]; Available from: https://www.annalsthoracicsurgery.org/article/S0003-4975(08)00659-0/pdf

  44. Saito T, Kuang J-Q, Bittira B, Al-Khaldi A, Chiu RCJ. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg [Internet]. 2002;74:19–24 discussion 24. [cited 2018 Nov 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/12118756.

    Google Scholar 

  45. Yang Y, Jacoby E, Fry TJ. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr Opin Hematol [Internet]. NIH Public Access. 2015;22:509–15 [cited 2018 Nov 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26390167.

    CAS  Google Scholar 

  46. Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol [Internet]. 2016;34:1112–21 [cited 2018 Sep 17] Available from: www.jco.org.

    CAS  Google Scholar 

  47. Jackson H, Brentjens R. Overcoming antigen escape with CART-cell therapy. Cancer Discov. 2016;27:138–44.

    Google Scholar 

  48. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood [Internet]. 2013;122:4129–39 [cited 2018 Sep 17] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24055823.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jacoby E, Yang Y, Qin H, Chien CD, Kochenderfer JN, Fry TJ. Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD. Blood [Internet]. American Society of Hematology. 2016;127:1361–70 [cited 2018 Sep 17] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26660684.

    CAS  Google Scholar 

  50. Torikai H, Reik A, Liu P-Q, Zhou Y, Zhang L, Maiti S, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood [Internet]. 2012;119:5697–705 [cited 2018 Sep 17] Available from: http://www.ncbi.nlm.nih.gov/pubmed/22535661.

    CAS  Google Scholar 

  51. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–2266. https://doi.org/10.1158/1078-0432.CCR-16-1300.

  52. Poirot L, Philip B, Ecile Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res [Internet]. 2015; [cited 2018 Sep 17]; Available from: http://cancerres.aacrjournals.org/.

  53. Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med [Internet]. 2017;9:eaaj2013 [cited 2018 Sep 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28123068.

    Google Scholar 

  54. Eyquem J, Mansilla-Soto J, Odak A, Sadelain M. 274. One-step generation of universal CAR T Cells. Mol Ther [Internet]. Elsevier. 2016;24:S109 [cited 2018 Sep 19] Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001616330830.

    Google Scholar 

  55. Mehta A, Merkel OM. Immunogenicity of Cas9 protein. J Pharm Sci [Internet]. Elsevier Ltd. 2019;109:62–7. https://doi.org/10.1016/j.xphs.2019.10.003.

    Article  CAS  Google Scholar 

  56. Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature [Internet]. Nat Publ Group. 2017;544:493–7 https://doi.org/10.1038/nature22076.

    CAS  Google Scholar 

  57. Mathur R, Zhang Z, He J, Galetto R, Gouble A, Chion-Sotinel I, et al. Universal SLAMF7-Specific CAR T-cells as treatment for multiple myeloma. Blood [Internet]. 2017:130 [cited 2018 Sep 19]. Available from: http://www.bloodjournal.org/content/130/Suppl_1/502?sso-checked=true.

  58. Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. Springer Berlin Heidelberg. 2016;65:485–92.

    CAS  Google Scholar 

  59. Siegler EL, Zhu Y, Wang P, Yang L. Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell [Internet]. Elsevier Inc. 2018;23:160–1. https://doi.org/10.1016/j.stem.2018.07.007.

    Article  CAS  Google Scholar 

  60. Boyiadzis M, Agha M, Redner RL, Sehgal A, Im A, Hou JZ, et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy [Internet]. Elsevier Inc. 2017;19:1225–32. https://doi.org/10.1016/j.jcyt.2017.07.008.

    Article  CAS  Google Scholar 

  61. Zeng J, Tang SY, Toh LL, Wang S. Generation of “off-the-shelf” natural killer cells from peripheral blood cell-derived induced pluripotent stem cells. Stem cell reports [Internet]. ElsevierCompany. 2017;9:1796–812. https://doi.org/10.1016/j.stemcr.2017.10.020.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle H. Townsend.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Townsend, M.H., Bennion, K., Robison, R.A. et al. Paving the way towards universal treatment with allogenic T cells. Immunol Res 68, 63–70 (2020). https://doi.org/10.1007/s12026-020-09119-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09119-7

Keywords

Navigation