Skip to main content
Log in

Lip morphology and ultrastructure of osmophores in Cyclopogon (Orchidaceae) reveal a degree of morphological differentiation among species

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Floral fragrances play an important role in pollinator attraction; they serve as signals for primary rewards such as nectar. The presence of osmophores (a specialized glandular tissue that produces fragrance) in the terrestrial orchid Cyclopogon has only been described in a single species. There are fragrant and odorless species within this genus, but no data on the similarities or differences between them has been published. Here, we present new data on the lip morphology and ultrastructure from eight Cyclopogon species to better understand the mechanisms of pollinator attraction of this group. To achieve this goal, we used light, scanning, and transmission electron microscopy. Five out of eight species presented globular trichomes associated with fragrance production on the abaxial side of the labellum. Together with subepidermal cells, they compose the secretory tissue. Despite the absence of globular trichomes, C. apricus also presented cells associated with fragrance production. Lipid droplets, plastids containing plastoglobuli, and starch were indicators of secretory activity present in these species. This same pattern of fragrance production and release, associated with flower morphology, may result in the restriction of pollination by halictid bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi SA, Machado SR, Guimarães E (2015) Structural and ultrastructural characterization of the floral lip in Gongora bufonia (Orchidaceae): understanding the slip-and-fall pollination mechanism. Botany 93:759–768. https://doi.org/10.1139/cjb-2015-0114

    Article  Google Scholar 

  • Antoń S, Kamińska M, Stpiczyńska M (2012) Comparative structure of the osmophores in the flower of Stanhopea graveolens L. and Cycnoches chlorochilon Klotzsch (Orchidaceae). Acta Agrobot 65:11–22. https://doi.org/10.5586/aa.2012.054

    Article  Google Scholar 

  • Ascensão L, Francisco A, Cotrim H, Pais MS (2005) Comparative structure of the labellum in Ophrys fusca and O. lutea (Orchidaceae). Am J Bot 92(7):1059–1067. https://doi.org/10.3732/ajb.92.7.1059

    Article  PubMed  Google Scholar 

  • Benitez-Vieyra S, Medina AM, Glinos E, Cocucci AA (2006) Pollinator-mediated selection on floral traits and size of floral display in Cyclopogon elatus, a sweat bee-pollinated orchid. Funct Ecol 20:948–957

    Article  Google Scholar 

  • Curry KJ, McDowell LM, Judd WS, Stern WL (1991) Osmophores, floral features, and systematics of Stanhopea (Orchidaceae). Am J Bot 78(5):610–623

    Article  Google Scholar 

  • David R, Carde JP (1964) Coloration différentielle des pseudophylles de Pin maritime au moyen du réactif de Nadi. CR Acad Sci Paris 258:1338–1340

    CAS  Google Scholar 

  • Davies KL, Stpiczyńska M (2014) Labellar anatomy and secretion in Bulbophyllum Thouars (Orchidaceae: Bulbophyllinae) sect. Racemosae Benth & Hook f. Ann Bot 114(5):889–911. https://doi.org/10.1093/aob/mcu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Melo MC, Borba EL, Paiva EAS (2010) Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: Pleurothallidinae). Plant Syst Evol 286:141–151

    Article  Google Scholar 

  • Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394. https://doi.org/10.1146/annurev.es.13.110182.002105

    Article  Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides Press, Portland

    Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A (1988) Secretory tissue in vascular plants. New Phytol 108:229–257. https://doi.org/10.1111/j.1469-8137.1988.tb04159.x

    Article  Google Scholar 

  • Franken EP, Pansarin LM, Pansarin ER (2016) Osmophore diversity in the Catasetum cristatum alliance (Orchidaceae: catasetinae). Lankesteriana 16(3):317–327. https://doi.org/10.15517/lank.v16i3.26649

    Article  Google Scholar 

  • Galetto L, Bernardello LM, Rivera GL (1997) Nectar, nectaries, flower visitors, and breeding system in five terrestrial Orchidaceae from Central Argentina. J Plant Res 110:393–403

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, New York

    Google Scholar 

  • Kowalkowska AK, Margońska HB, Kozieradzka-Kiszkurno M, Bohdanowicz J (2012) Studies on the ultrastructure of a three-spurred fumeauxiana form of Anacamptis pyramidalis. Plant Syst Evol 298:1025–1035. https://doi.org/10.1007/s00606-012-0611-y

    Article  Google Scholar 

  • Kowalkowska AK, Kozieradzka-Kiszkurno M, Turzyński S (2015) Morphological, histological and ultrastructural features of osmophores and nectary of Bulbophyllum wendlandianum (Kraenzl.) Dammer (B. section Cirrhopetalum Lindl., Bulbophyllinae Schltr., Orchidaceae). Plant Syst Evol 301:609–622. https://doi.org/10.1007/s00606-014-1100-2

    Article  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568

    Article  Google Scholar 

  • Pansarin ER, Amaral MCE (2009) Reproductive biology and pollination of southeastern Brazilian Stanhopea frost ex hook. (Orchidaceae). Flora 204(3):238–249

    Article  Google Scholar 

  • Płachno BJ, Stpiczyńska M, Świątek P, Davies KL (2016) Floral micromorphology of the Australian carnivorous bladderwort Utricularia dunlopii, a putative pseudocopulatory species. Protoplasma 253:1463–1473

    Article  Google Scholar 

  • Pridgeon AM, Stern WL (1983) Ultrastructure of osmophores in Restrepia (Orchidaceae). Am J Bot 70:1233–1243

    Article  Google Scholar 

  • Pridgeon AM, Stern WL (1985) Osmophores of Scaphosepalum (Orchidaceae). Bot Gaz 146(1):115–123. https://doi.org/10.1086/337505

    Article  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Portland

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  Google Scholar 

  • Salazar GA (2003) Subtribe Spiranthinae. In: Pridgeon AM et al (eds) Genera Orchidacearum, Orchidoideae part 2, Vanilloideae, vol 3. Oxford University Press, Oxford, pp 164–278

    Google Scholar 

  • Salazar GA, Batista JAN, Cabrera LI, van Den Berg C, Whitten WM, Smidt EC, Buzatto CR, Singer RB, Gerlach G, Jimenez-Machorro R, Radins JA, Insaurralde IS, Guimaraes LRS, de Barros F, Tobar F, Linares JL, Mujica E, Dressler RL, Blanco MA, Hagsater E, Chase MW (2018) Phylogenetic systematics of subtribe Spiranthinae (Orchidaceae: Orchidoideae: Cranichideae) based on nuclear and plastid DNA sequences of a nearly complete generic sample. Bot J Linn Soc 186(3):273–303. https://doi.org/10.1093/botlinnean/box096

    Article  Google Scholar 

  • Singer RB, Cocucci AA (1999) Pollination mechanism in southern Brazilian orchids which are exclusively or mainly pollinated by halictid bees. Plant Syst Evol 217:101–117

    Article  Google Scholar 

  • Singer RB, Sazima M (1999) The pollination mechanism in the “Pelexia alliance” (Orchidaceae: Spiranthinae). Bot J Linn Soc 131:249–262

    Google Scholar 

  • Stern WL, Curry KJ, Pridgeon AM (1987) Osmophores of Stanhopea (Orchidaceae). Am J Bot 74:1323–1331. https://doi.org/10.2307/2444310

    Article  Google Scholar 

  • Stpiczyńska M (1993) Anatomy and ultrastructure of osmophores of Cymbidium tracyanum Rolfe (Orchidaceae). Acta Soc Bot Pol 62(1–2):5–9. https://doi.org/10.5586/asbp.1993.001

    Article  Google Scholar 

  • Stpiczyńska M (2001) Osmophores of the fragrant orchid Gymnadenia conopsea L. (Orchidaceae). Acta Soc Bot Pol 70(2):91–96. https://doi.org/10.5586/asbp.2001.012

    Article  Google Scholar 

  • Stpiczyńska M, Davies KL (2016) Evidence for the dual role of floral secretory cells in Bulbophyllum. Acta Biol Cracov Ser Bot 58:57–69. https://doi.org/10.1515/abcsb-2016-0013

    Article  Google Scholar 

  • Van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables

    Google Scholar 

  • Vogel S (1990) The role of scent glands in pollination: on the structure and function of osmophores. Amerind Publishing, New Delhi

    Google Scholar 

  • Wiemer AP, Moré M, Benitez-Vieyra S, Cocucci AA, Raguso RA, Sérsic AN (2009) A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae). Plant Biol 11(4):506–514. https://doi.org/10.1111/j.1438-8677.2008.00140.x

    Article  CAS  PubMed  Google Scholar 

  • Williams NH (1982) The biology of orchids and euglossine bees. In: Arditti J (ed) Orchid biology: reviews and perspectives. Cornell University Press, New York, Ithaca, pp 119–171

    Google Scholar 

  • Williams NH, Whitten WM (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull 164(3):355–395

    Article  CAS  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. University Press, Princeton

    Book  Google Scholar 

  • Wiśniewska N, Kowalkowska AK, Kozieradzka-kiszkurno M, Krawczyńska AT, Bohdanowicz J (2018) Floral features of two species of Bulbophyllum section Lepidorhiza Schltr.: B. levanae Ames and B. nymphopolitanum Kraenzl. (Bulbophyllinae Schltr., Orchidaceae). Protoplasma 255:485–499. https://doi.org/10.1007/s00709-017-1156-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff of Electron Microscopy Center (UNESP – Botucatu) for providing the equipment and assistance with sample preparation. We also thank the anonymous reviewers for valuable commentary on the manuscript.

Funding

This work was supported through a research grant from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – PNPD 88882.317776/2019-01) to S.A.A., and S.R.M. received a research grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, proc. 304396/2015-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Akira Adachi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, S.A., Machado, S.R. Lip morphology and ultrastructure of osmophores in Cyclopogon (Orchidaceae) reveal a degree of morphological differentiation among species. Protoplasma 257, 1139–1148 (2020). https://doi.org/10.1007/s00709-020-01499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01499-9

Keywords

Navigation