Skip to main content

Advertisement

Log in

Predicting distributional shifts of commercially important seaweed species in the Subantarctic tip of South America under future environmental changes

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Shifts in species distributions are among the observed consequences of climate change, forcing species to follow suitable environmental conditions. Using species distribution models (SDMs), we aimed at predicting trends in habitat shifts of two seaweed species of commercial interest in the Subantarctic Patagonian region in response to ongoing environmental changes across temperate South America and worldwide. We gathered occurrence data from direct, on-site visual, and taxonomic identification (2009–2018) from global databases of species occurrence and from the scientific literature. We built the SDMs selecting putative predictors of biological relevance to Lessonia flavicans and Gigartina skottsbergii. We calibrated the SDMs using MaxEnt and GLMs for model evaluation, splitting our occurrence datasets into two parts: for model training and for model testing. The models were projected to future climate change scenarios (Representative Concentration Pathway: RCP 2.6 and RCP 8.5) to examine trends in shifting habitat suitability for each species. Maximum sea surface temperature was the main predictor variable, followed by minimum nitrate concentration, explaining both species’ distributional shift across Subantarctic shorelines by the year 2050. Projection of the SDM for each species under altered environmental conditions to 30–40 years into the future resulted in a south poleward shift with a reduction in habitat range for both species. Such responses would threaten their persistence, local marine species richness, biodiversity, ecological function, and thereby, the commercial and ecosystem services provided by L. flavicans and G. skottsbergii in Subantarctic South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RP, Araújo MB, Guisan A, Lobo JM, Martínez-Meyer E, Peterson AT, Soberón J (2016) Are species occurrence data in global online repositories fit for modeling species distributions? The case of the Global Biodiversity Information Facility (GBIF). In: Final report of the task group on gbif data fitness for use in distribution modelling. Global Biodiversity Information Facility (GBIF)

  • Anis M, Ahmed S, Hasan M (2017) Algae as nutrition, medicine and cosmetic: the forgotten history, present status and future trends. World J Pharm Pharm Sci 6:1934–1959

    CAS  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Google Scholar 

  • Assis J, Berecibar E, Claro B, Alberto F, Reed D, Raimondi P, Serrão EA (2017) Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Sci Rep 7:44348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA, De Clerck O (2018) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284

    Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Google Scholar 

  • Ayers JM, Strutton PG (2013) Nutrient variability in subantarctic mode waters forced by the southern annular mode and ENSO. Geophys Res Lett 40:3419–3423

    Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Google Scholar 

  • Batista M, Batista A, Franzan P, Simionatto P, Silveira T, Rubio G, Scarabino F, Camacho O, Schmitz C, Martinez A, Ortega L (2018) Kelps’ long-distance dispersal: role of ecological/oceanographic processes and implications to marine forest conservation. Diversity 10:1–25

    Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Google Scholar 

  • Brown J, Knowles L (2012) Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Mol Ecol 21:3757–3775

    PubMed  Google Scholar 

  • Cardoso M, Carvalho G, Silva P, Rodrigues S, Pereira R, Pereira L (2014) Bioproducts from seaweeds: a review with special focus on the Iberian Peninsula. Curr Org Chem 18:896–917

    CAS  Google Scholar 

  • Cavan EL, Boyd PW (2018) Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquat Microb Ecol 82:111–127

    Google Scholar 

  • Cheung W, Lam V, Sarmiento J, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251

    Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013-The physical science basis: contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136

    Google Scholar 

  • Convey P, Peck LS (2019) Antarctic environmental change and biological responses. Sci Adv 5:eaaz0888

    PubMed  PubMed Central  Google Scholar 

  • Davis M, Shaw R (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    CAS  PubMed  Google Scholar 

  • Dayton PK (1985) The structure and regulation of some South American kelp communities. Ecol Monogr 55:447–468

    Google Scholar 

  • Dulvy N, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039

    Google Scholar 

  • Elith J, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick RJ, Lehmann A, Li J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Evans MEK, Merow C, Record S, McMahon SM, Enquist BJ (2016) Towards process-based range modeling of many species. Trends Ecol Evol 31:860–871

    PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Flukes EB, Wright JT, Johnson CR (2015) Phenotypic plasticity and biogeographic variation in physiology of habitat-forming seaweed: response to temperature and nitrate. J Phycol 51:896–909

    CAS  PubMed  Google Scholar 

  • Franco JN, Tuya F, Bertocci I, Rodríguez L, Martínez B, Sousa-Pinto I, Arenas F (2018) The ‘golden kelp’ Laminaria ochroleuca under global change: integrating multiple eco-physiological responses with species distribution models. J Ecol 106:47–58

    Google Scholar 

  • Franco JN, Wernberg T, Bertocci I, Duarte P, Jacinto D, Vasco-Rodrigues N, Tuya F (2015) Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate. Mar Ecol Prog Ser 536:1–9

    Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci 106:3249–3253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471

    PubMed  Google Scholar 

  • Fraser CI (2016) Change in Southern Hemisphere intertidal communities through climate cycles: the role of dispersing algae. In: Hu Z-M, Fraser C (eds) Seaweed Phylogeography. Springer, Dordrecht, pp 131–143

    Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    PubMed  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contributions of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 151

    Google Scholar 

  • Iriarte JL (2018) Natural and human influences on marine processes in Patagonian Subantarctic coastal waters. Front Mar Sci 5:360–367

    Google Scholar 

  • Lara A, Villalba R, Wolodarsky-Franke A, Aravena JC, Luckman BH, Cuq E (2005) Spatial and temporal variation in Nothofagus pumillo growth at tree line along its latitudinal range (35° 40′-55° S) in the Chilean Andes. J Biogeogr 32:879–893

    Google Scholar 

  • Martínez B, Radford B, Thomsen MS, Connell SD, Carreño F, Bradshaw CJ, Fordham DA, Russell BD, Gurgel CF, Wernberg T (2018) Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers Distrib 24:1350–1366

    Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Google Scholar 

  • Miloslavich P, Klein E, Díaz JM, Hernández CE, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh PE, Neill PE, Carranza A, Retana MV, Díaz de Astarloa JM, Lewis M, Yorio P, Piriz ML, Rodríguez D, Yoneshigue-Valentin Y, Gamboa L, Martín A, Thrush S (2011) Marine biodiversity in the Atlantic and Pacific Coasts of South America: knowledge and gaps. PLoS ONE 6:e14631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JK, Fu W, Primeau F, Britten GL, Lindsay K, Long M, Doney SC, Mahowald N, Hoffman F, Randerson JT (2018) Sustained climate warming drives declining marine biological productivity. Science 359:1139–1143

    CAS  PubMed  Google Scholar 

  • Muth AF, Graham MH, Lane CE, Harley CD (2019) Recruitment tolerance to increased temperature present across multiple kelp clades. Ecology 100:e02594

    PubMed  Google Scholar 

  • Nielsen SL, Nielsen HD, Pedersen MF (2014) Juvenile life stages of the brown alga Fucus serratus L. are more sensitive to combined stress from high copper concentration and temperature than adults. Mar Biol 161:1895–1904

    CAS  Google Scholar 

  • Nikula R, Fraser CI, Spencer HG, Waters JM (2010) Circumpolar dispersal by rafting in two Subantarctic kelp dwelling crustaceans. Mar Ecol Prog Ser 405:221–230

    CAS  Google Scholar 

  • Ojeda J, Rozzi R, Rosenfeld S, Contador T, Massardo F et al (2018) Biocultural interactions of the Yaghan people with seaweeds and mollusks: a field environmental philosophy approach. Magallania 46:155–181

    Google Scholar 

  • Oyarzún D, Brierley CM (2019) The future of coastal upwelling in the Humboldt current from model projections. Clim Dyn 52:599–615

    Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579

    CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37

    CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    PubMed  Google Scholar 

  • Piñeiro C, Barreiro R, Franco J, Barrientos S, Cremades J, Arenas F (2017) Effects of temperature and nutrients on growth, survival and physiology of six intertidal seaweeds. Phycologia 56:148–149

    Google Scholar 

  • Quartino M, Deregibus D, Campana GL et al (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One 8:e58223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranc N, Santini L, Rondinini C, Boitani L, Poitevin F, Angerbjörn A, Maiorano L (2017) Performance tradeoffs in target-group bias correction for species distribution models. Ecography 40:1076–1087

    Google Scholar 

  • Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942

    PubMed  Google Scholar 

  • Rozzi R, Armesto JJ, Gutiérrez JR, Massardo F, Likens GE, Anderson CB, Poole A, Moses KP, Hargrove E, Mansilla AO, Kennedy JH, Willson M, Jax K, Jones CG, Baird Callicott J, Arroyo MTK (2012) Integrating ecology and environmental ethics: Earth stewardship in the southern end of the Americas. Bioscience 62:226–236

    Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed September 2019

  • Hijmans RJ (2019) Raster: geographic data analysis and modeling. version 3.0–2 R package 3.0.0. https://CRAN.R-project.org/package=raster. Accessed January 2020

  • Santelices B, Ojeda FP (1984) Effects of canopy removal on the understory algal community structure of coastal forests of Macrocystis pyrifera from Southern South America. Mar Ecol Prog Ser 14:165–173

    Google Scholar 

  • Searles RB (1978) The genus Lessonia Bory (Phaeophyta, Laminariales) in Southern Chile and Argentina. Brit J Phycol 13:361–381

    Google Scholar 

  • Setchell WA, Gardner NL (1936) Iridophycus gen. nov. and its representation in South America. Proc Natl Acad Sci U S A 22:469–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofaer HR, Jarnevich CS, Flather CH (2018) Misleading prioritizations from modelling range shifts under climate change. Glob Ecol Biogeogr 27:658–666

    Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: A Bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience, future. Environ Conserv 29:436–459

    Google Scholar 

  • Strain EMA, van Belzen J, van Dalen J, Bouma TJ, Airoldi L, Bianchi CN (2015) Management of local stressors can improve the resilience of marine canopy algae to global stressors. PLoS ONE 10:e0120837

    PubMed  PubMed Central  Google Scholar 

  • Sudha PN (ed) (2017) Industrial applications of marine biopolymers. CRC Press, Boca Raton

    Google Scholar 

  • Tala F, López BA, Velásquez M, Jeldres R, Macaya EC, Mansilla A, Ojeda J, Thiel M (2019) Long-term persistence of the floating bull kelp Durvillaea antarctica from the South-East Pacific: potential contribution to local and transoceanic connectivity. Mar Environ Res 149:67–79

    CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  PubMed  Google Scholar 

  • Turra A, Cróquer A, Carranza A, Mansilla A, Areces AJ, Werlinger C, Martínez-Bayón C, Nassar CA, Plastino E, Schwindt E, Scarabino F (2013) Global environmental changes: setting priorities for Latin American coastal habitats. Glob Chang Biol 19:1965–1969

    PubMed  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281

    Google Scholar 

  • VanDerWal J, Murphy HT, Kutt AS, Perkins GC, Bateman BL, Perry JJ, Reside AE (2013) Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat Clim Chang 3:239

    Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T (2011) The representative concentration pathways: an overview. Clim Chang 109:5

    Google Scholar 

  • Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, Gurgel CFD, De Clerck O (2013) Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS One 8:e68337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A, Bozec Y-M, Steinberg PD (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113:13791–13796

    PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Google Scholar 

  • Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 265–291

    Google Scholar 

  • Williamson CE, Neale PJ, Hylander S, Rose KC, Figueroa FL, Robinson SA, Häder DP, Wängberg SÅ, Worrest RC (2019) The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem Photobiol Sci 18:717–746

    CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Chile’s Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT/National Funding for Scientific and Technological Development) Program, grant #1180433 and grant #1140940 of the National Commission for Scientific and Technological Research (CONICYT in Spanish), as well as provided by CONICYT’s Program for Investigación Asociativa (PIA CCTE AFB170008 – Institute of Ecology and Biodiversity (IEB), University of Chile). We thank the graduate scholarships by IEB of the Millennium Scientific Initiative (ICM in Spanish) granted to FM, JPR, SR, and JM, grant #P05-002 ICM and #PFB-23-2008 ICM. We give especial thanks to Cruceros Australis S.A. for their cruise ships’ logistic-transportation support to reach the study sites, as well as Ernesto Davis and Mathias Hüne (Centre ICEA) for their on-site assistance throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Murcia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia, S., Riul, P., Mendez, F. et al. Predicting distributional shifts of commercially important seaweed species in the Subantarctic tip of South America under future environmental changes. J Appl Phycol 32, 2105–2114 (2020). https://doi.org/10.1007/s10811-020-02084-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02084-6

Keywords

Navigation