Skip to main content

Advertisement

Log in

Glacial relicts in the Alps: the decline and conservation strategy for Nuphar pumila (Nymphaeaceae)

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

The Alps played an important role in the biogeography of European plants and acted as a refugium for numerous species during the interglacial cycles. We investigated Nuphar pumila, one of the most emblematic glacial relicts of the Alps, by carrying out exhaustive literature and field surveys to collect relevant data on its distribution and threats. We further evaluated the level of introgression with the closely related N. lutea based on microsatellite data from natural populations across the Alps as well as from all ex situ collections and reintroductions in Switzerland. According to our results, more than 60% of the known N. pumila populations went extinct, and the species currently presents 37 natural populations in the investigated area. A large number of populations were affected by eutrophication (69%) and hybridization with N. lutea (53%). Priority should be given to the in situ conservation of genetically pure populations, while ex situ cultures should be applied to nearly extinct populations and the genetically pure individuals still present in hybrid populations. N. pumila is an excellent representative of the wetland/aquatic glacial relicts that are particularly affected by the combination of climate change and habitat degradation. International integration of research and conservation programs is needed to limit the decline of such rare species in the Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Roweck (1988) and Padgett (2007); b the investigated populations in the Alps and neighboring mountain ranges; and c the historical and present populations of N. pumila and its hybrids (N × spenneriana). Black circles: pure populations of N. pumila. White circles: hybrid populations of N × spenneriana. White circles with a black dot: N. pumila and N × spenneriana coexisting. Black squares: introductions. Background maps: https://d-maps.com/

Similar content being viewed by others

References

  • Aeschimann D, Luber K, Moser DM, Theurillat J-P (2004) Flora alpina, vol 1–3. Haupt Verlag, Bern

    Google Scholar 

  • Allendorf F, Leary R, Spruell P, Wenburg J (2001) The problems with hybrids: setting conservation guidelines. Trend Ecol Evol 16:613–622

    Article  Google Scholar 

  • Anamthawat-Jonsson K, Thorsson AT (2003) Natural hybridisation in birch: triploid hybrids between Betula nana and B. pubescens. Plant Cell Tissue Org Cult 75:99–107

    Article  Google Scholar 

  • Arrigo N, Bétrisey S, Graf L, Bilat J, Gerber E, Kozlowski G (2016) Hybridization as a threat in climate relict Nuphar pumila (Nymphaeaceae). Biodivers Conserv 25:1863–1877

    Article  Google Scholar 

  • Bornand C, Gygax A, Juillerat P, Jutzi M, Möhl A, Rometsch S, Sager L, Santiago H, Eggenberg S (2016) Rote Liste Gefässpflanzen. Gefährdete Arten der Schweiz. Bundesamt für Umwelt, Bern und Info Flora, Genf. Umwelt-Vollzug Nr. 1621

  • Brochmann C, Gabrielsen TM, Nordal I, Landvik JY, Elven R (2003) Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon 52:417–450

    Google Scholar 

  • Buerkle CA (2005) Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol Ecol Notes 5:684–687

    Article  CAS  Google Scholar 

  • Cayouette J, Cattling PM (1992) Hybridization in the genus Carex with special reference to North America. Bot Rev 58:351–440

    Article  Google Scholar 

  • Chase WM, Hills HG (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220

    Article  Google Scholar 

  • Eidesen PB, Ehrich D, Bakkestuen V, Alsos IG, Gilg O, Taberlet P, Brochmann C (2013) Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity. New Phytol 200:898–910

    Article  PubMed  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol 42:313–333

    Article  Google Scholar 

  • Heslop-Harrison Y (1953) Nuphar intermedia Lebed., a presumed relict hybrid in Britain. Watsonia 3:7–25

    Google Scholar 

  • Heslop-Harrison Y (1955) Nuphar Sm. J Ecol 43:342–364

    Article  Google Scholar 

  • Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. J Biogeogr 36:476–480

    Article  Google Scholar 

  • Jadwiszczak KA, Jablonska E, Klosowski S, Banaszek A (2011) Aneuploids in the shrub birch Betula humilis populations in Poland. Acta Soc Bot Pol 80:233–235

    Article  Google Scholar 

  • Jadwiszczak KA, Drzymulska D, Banaszek A, Jadwiszczak P (2012) Population history, genetic variation and conservation status of the endangered birch species Betula nana L. in Poland. Silva Fenn 46:465–477

    Google Scholar 

  • Käsermann CH, Moser DM (1999) Merkblätter Artenschutz, Blütenpflanzen und Farne. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, Switzerland

  • Kozlowski G (2001) Une plante rarissime dans le canton de Fribourg: le Nénuphar nain [N. pumila (Timm.) DC.]. Bull Soc Frib Sc Nat 90:60–71

    Google Scholar 

  • Kozlowski G, Eggenberg S (2005) Vorkommen der Kleinen Teichrose Nuphar pumila und des Hybrids N. × intermedia in der Schweiz. Bot Helv 115:125–136

    Article  Google Scholar 

  • Kulczynski S (1924) Das boreale und arktisch-alpine Element in der mitteleuropäischen Flora. Bull de l’Ac Pol d Sc Série B 3:127–214

    Google Scholar 

  • Maiz-Tome L (2016) Nuphar pumila. The IUCN red list of threatened species 2016: e.T167888A1179645

  • Metzing D, Garve E, Matzke-Hajek G (2018) Rote Liste und Gesamtartenliste der Farn- und Blütenpflanzen (Trachaeophyta) Deutschlands. Bundesamt für Naturschutz. Naturschutz und Biologische Vielfalt 70:13–358

    Google Scholar 

  • Meusel H, Mühlberg H, Fuchs HP (1965) Nymphaeaceae. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa. Band III. Teil 3. Carl Hanser, München

    Google Scholar 

  • Mikolajczak A, Ferrez Y (2005) Connaissance de la flore rare ou menacée de Franche-Comté, Nuphar pumila (Timm) DC., Conservatoire Botanique de Franche-Comté

  • Muller S (2006) Les plantes protégées de Lorraine. Distribution, écologie, conservation. Biotope, Mèze (collection Parthénope)

  • Natho G (1959) Variationsbreite und Bastardbildung bei mitteleuropäischen Birkensippen. Feddes Repert 61:211–273

    Article  Google Scholar 

  • Niklfeld H (1999) Rote Liste gefährdeter Pflanzen Österreichs. Grüne Reihe des Bundesministeriums für Umwelt Jugend und Familie. Band 10. Graz, Austria

  • Oberdorfer E (1977) Süddeutsche Pflanzengesellschaften Teil I. Zweite Auflage. Gustav Fischer, Stuttgart

    Google Scholar 

  • Padgett DJ (1998) Phenetic distinction between the dwarf yellow water-lilies: Nuphar microphylla and N. pumila (Nymphaeaceae). Can J Bot 76:1755–1762

    Google Scholar 

  • Padgett DJ (2007) A monograph of Nuphar (Nympheaceae). Rhodora 109:1–95

    Article  Google Scholar 

  • Padgett DJ, Les DH, Crow GE (1998) Evidence for the hybrid origin of Nuphar × rubrodisca (Nymphaeaceae). Am J Bot 85:1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Padgett DJ, Les DH, Crow GE (1999) Phylogenetic relationships in Nuphar (Nymphaeaceae): evidence from morphology, chloroplast DNA, and nuclear ribosomal DNA. Am J Bot 86:1316–1324

    Article  CAS  PubMed  Google Scholar 

  • Padgett DJ, Shimoda M, Horky LA, Les DH (2002) Natural hybridization and the imperiled Nuphar of Western Japan. Aquat Bot 72:161–174

    Article  Google Scholar 

  • Paun O, Schönswetter P, Winkler M, Consortium I, Tribsch A (2008) Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol Ecol 17:4263–4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisch C (2001) Climatic oscillations and the fragmentation of plant populations—genetic diversity within and among populations of the glacial relict plants Saxifraga paniculata (Saxifragaceae) and Sesleria albicans (Poaceae). Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften der Naturwissenschaftlichen Fakultät III, Biologie und Vorklinische Medizin der Universität Regensburg

  • Ronikier M, Schneeweis GM, Schönswetter P (2012) The extreme disjunction between Beringia and Europe in Ranunculus glacialis sl. (Ranunculaceae) does not coincide with the deepest genetic split—a story of the importance of temperate mountain ranges in arctic-alpine phylogeography. Mol Ecol 21:5561–5578

    Article  CAS  PubMed  Google Scholar 

  • Roweck H (1988) Ökologische Untersuchungen an Teichrosen. Archiv für Hydrobiologie. Schweizerbart'sche Verlagsbuchhandlung, Supplementband. 81 Heft 2/3. Nägele u. Obermiller. Stuttgart, Germany

  • Roweck H, Reinöhl H (1986) Zur Verbreitung und systematischen Abgrenzung der Teichrosen Nuphar pumila und N. × intermedia in Baden-Württemberg. Veröffentlichungen Landesstelle Naturschutz Baden-Württemberg 61:81–151

    Google Scholar 

  • Schmitt T, Muster C, Schönswetter P (2010) Are disjunct alpine and arctic-alpine animal and plant species in the western Palearctic really “relics of the cold past”? In: Habel JC, Assman T (eds) Relict species: phylogeny and conservation biology. Springer, Berlin, pp 239–252

    Chapter  Google Scholar 

  • Schroeter C (1926) das Pflanzenleben der Alpen. Eine Schilderung der Hochgebirgsflora. Verlag Albert Raustein, Zürich

    Google Scholar 

  • Shiga T, Kadono Y (2007) Natural hybridization of the two Nuphar species in northern Japan: homoploid hybrid speciation in progress? Aquat Bot 86:123–131

    Article  CAS  Google Scholar 

  • Shiga T, Kadono Y (2008) Genetic relationships of Nuphar in central to western Japan as revealed by allozyme analysis. Aquat Bot 88:105–112

    Article  CAS  Google Scholar 

  • Stehlik I (2003) Resistance or emigration? Response of alpine plants to the ice ages. Taxon 52:499–510

    Article  Google Scholar 

  • Stehlik I, Blattner FR, Holderegger R, Bachmann K (2002) Nunatak survival of the high Alpine plant Eritrichium nanum (L.) Gaudin in the central Alps during the ice ages. Mol Ecol 11:2027–2036

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  CAS  PubMed  Google Scholar 

  • Thorn K (1960) Bemerkungen zu einer Übersichtskarte vermutlicher Glazialreliktpflanzen Deutschlands. Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft 8:81–85

    Google Scholar 

  • Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the eastern Alps. Taxon 52:477–497

    Article  Google Scholar 

  • Varga ZS, Schmitt T (2008) Types of oreal and oreotundral disjunctions in the western Palearctic. Biol J Linn Soc 93:415–430

    Article  Google Scholar 

  • Volkova PA, Arutyunyan NG, Schanzer IA, Chemeris EV, Bobrov AA (2018) Genetic variability of Eurasian Nuphar species unravels possible routes in which freshwater plants could fill their wide areas. Aquat Bot 145:49–57

    Article  CAS  Google Scholar 

  • Walter H, Straka H (1970) Arealkunde. Floristisch-historische Geobotanik. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Wangerin W (1932) Florenelemente und Arealtypen. Beih Bot Zentralbl 49:515–566

    Google Scholar 

  • Welk E (2001) Arealkundliche Analyse und Bewertung der Schutzrelevanz seltener und gefährdeter Gefässpflanzen Deutschlands. Dissertation zur Erlangung des Doktorgrades vorgelegt an der Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Halle-Wittenberg

  • Windmaisser T, Kattari S, Heubl G, Reisch C (2016) Glacial refugia and postglacial expansion of the alpine-prealpine plant species Polygala chamaebuxus. Ecol Evol 6:7809–7819

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler M, Tribsch A, Schneeweis GM, Brodbeck S, Gugerli F, Holderegger R, Abbott RJ, Schönswetter P (2012) Tales of the unexpected: phylogeography of the arctic-alpine model plant Saxifraga oppositifolia (Saxifragaceae) revisited. Mol Ecol 21:4618–4630

    Article  PubMed  Google Scholar 

  • Woolbright SA, Whitham TG, Gering CA, Allan GJ, Bailey JK (2014) Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol Evol 29:406–416

    Article  PubMed  Google Scholar 

  • Zimmermann M, Vischer-Leopold M, Ellwanger G, Ssymak A, Schröder E (2010) The EU habitat directive and the German Natura 200 network of protected areas as tool for implementing the conservation of relict species. In: Habel JC, Assman T (eds) Relict species: phylogeny and conservation biology. Springer, Berlin, pp 323–340

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to the following persons and institutions for their precious help, collaboration and/or issue of permissions: Switzerland—Botanical Gardens of St-Gall, Zürich, Geneva, Lausanne and Fribourg; Benoît Clément, Botanical Garden of the University of Fribourg; Marius Achermann and Francesca Cheda, Service de la Nature et du paysage de l’Etat de Fribourg; Dr. Andreas Keel, Amt für Landschaft- und Naturschutz, Kanton Zürich; Claudia Huber, UNA, Bern; Rolf Heeb and Christian Peisker, Kantonsschule Wattwil; Luca Champoud and Valentine Kam, Collège du Sud, La Frasse; François Genoud, Auberge du Lac des Joncs, Les Paccots; Coordination régionale pour la protection de la flore (FR-GE-NE-VD); Dr. Stephan Eggenberg, Info Flora. France—Eric Brugel and Julien Guyonneau, Conservatoire botanique national de Franche-Comté; Sophie Daucourt, Direction Régionale de l’Environnement, de l’Aménagement et du Logement de Franche-Comté (DREAL); Alain David, Office National de l’Eau et des Milieux Aquatiques (ONEMA); Alain Piot, Hôtel et lac de l’Abbaye, Grande-Rivière; owners of the pond Bachetey, Haute-Saône. Austria—Michaela Messner, Bezirkshauptmannschaft Reutte; municipalities of Grän and Nesselwängle, Tirol. Germany—Günter Riegel, Regierungsbezirk Schwaben; Dr. Klaus Neugebauer, Regierungsbezirk Oberbayern; Hans Lampartner, Regierungspräsidium Tübingen; Bertrand Schmidt, Landratsamt Ravensburg; Dr. Ulrich Weiland, Zweckverband Allgäuer Moorallianz; Dr. Stephanie Socher, Bayerischen Landesamt für Umwelt in Augsburg; Naturpark Südschwarzwald; Sigrid Rossiwal, Regierung von Oberbayern, Uwe Grabner, Starnberg; Josef Kunsler, Bad Endorf; NSG Eggstätt-Hemhofer Seenplatte; Bernadette Zimmermann, Regierungspräsidium Freiburg. We thank the Natural History Museum Fribourg (Switzerland) and the Fonds de recherche of the University of Fribourg (Switzerland, Project number 516) for their logistic and financial support. Nils Arrigo was funded by an SNSF Ambizione research Grant (PZ00P3_148224).

Author information

Authors and Affiliations

Authors

Contributions

GK and SB developed the research ideas; SB, LG, and EG collected the data and samples; NA and JB carried out molecular analyses; SB, NA, and GK analyzed the data and led the writing of the manuscript.

Corresponding author

Correspondence to Gregor Kozlowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in relation with this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bétrisey, S., Arrigo, N., Graf, L. et al. Glacial relicts in the Alps: the decline and conservation strategy for Nuphar pumila (Nymphaeaceae). Alp Botany 130, 89–99 (2020). https://doi.org/10.1007/s00035-020-00232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-020-00232-9

Keywords

Navigation