Skip to main content

Advertisement

Log in

Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The ground state of embryonic stem cells (ESCs) is closely related to the development of regenerative medicine. Particularly, long-term culture of ESCs in vitro, maintenance of their undifferentiated state, self-renewal and multi-directional differentiation ability is the premise of ESCs mechanism and application research. Induced pluripotent stem cells (iPSC) reprogrammed from mouse embryonic fibroblasts (MEF) cells into cells with most of the ESC characteristics show promise towards solving ethical problems currently facing stem cell research. However, integration into chromosomal DNA through viral-mediated genes may activate proto oncogenes and lead to risk of cancer of iPSC. At the same time, iPS induction efficiency needs to be further improved to reduce the use of transcription factors. In this review, we discuss small molecules that promote self-renewal and reprogramming, including growth factor receptor inhibitors, GSK-3β and histone deacetylase inhibitors, metabolic regulators, pathway modulators as well as EMT/MET regulation inhibitors to enhance maintenance of ESCs and enable reprogramming. Additionally, we summarize the mechanism of action of small molecules on ESC self-renewal and iPSC reprogramming. Finally, we will report on the progress in identification of novel and potentially effective agents as well as selected strategies that show promise in regenerative medicine. On this basis, development of more small molecule combinations and efficient induction of chemically induced pluripotent stem cell (CiPSC) is vital for stem cell therapy. This will significantly improve research in pathogenesis, individualized drug screening, stem cell transplantation, tissue engineering and many other aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ESCs:

Embryonic stem cells

iPSC:

Induced pluripotent stem cells

GSK-3β:

Glycogen synthesis kinase 3β

BIO:

6-bromoindirubin-3′-oxime

MAPK:

Mitogen Activated Protein Kinase

ERK:

Extracellular Regulated protein Kinase

RasGAP:

RasGTP-activated protein

PI3K:

Phosphatidyl inositol-3-kinase

PDK1:

Phosphoinositide-dependent kinase-1

MET:

Mesenchymal cells to epithelial cells

References

  1. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  4. Mikkelsen, T.S.et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): p. 553–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.

    Article  CAS  PubMed  Google Scholar 

  6. Wernig, M., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–3U2.

    Article  CAS  PubMed  Google Scholar 

  7. Boland, M. J., Hazen, J. L., Nazor, K. L., Rodriguez, A. R., Gifford, W., Martin, G., Kupriyanov, S., & Baldwin, K. K. (2009). Adult mice generated from induced pluripotent stem cells. Nature, 461(7260), 91–U94.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, X. Y., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260), 86–U88.

    Article  CAS  PubMed  Google Scholar 

  9. Kang, L., Wang, J., Zhang, Y., Kou, Z., & Gao, S. (2009). iPS cells can support full-term development of Tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5(2), 135–138.

    Article  CAS  PubMed  Google Scholar 

  10. Park, I. H., Lerou, P. H., Zhao, R., Huo, H., & Daley, G. Q. (2008). Generation of human-induced pluripotent stem cells. Nature Protocols, 3(7), 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  12. Yu, J. Y., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  13. Esteban, M. A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., Cai, J., Lai, L., & Pei, D. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. The Journal of Biological Chemistry, 284(26), 17634–17640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., & Ding, S. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4(1), 16–19.

    Article  PubMed  CAS  Google Scholar 

  15. Liao, J., et al. (2009). Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell, 4(1), 11–15.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., Qu, X., Xiang, T., Lu, D., Chi, X., Gao, G., Ji, W., Ding, M., & Deng, H. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell, 3(6), 587–590.

    Article  CAS  PubMed  Google Scholar 

  17. Koh, S., & Piedrahita, J. A. (2015). Generation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts. Methods in Molecular Biology, 1330, 69–78.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., Zhu, H., Teng, X., Cheng, L., & Xiao, L. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 1(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  19. Roberts, R. M., Telugu, B. P., & Ezashi, T. (2009). Induced pluripotent stem cells from swine (sus scrofa): Why they may prove to be important. Cell Cycle, 8(19), 3078–3081.

    Article  CAS  PubMed  Google Scholar 

  20. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C. E., & Eggan, K. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  21. Ebert, A. D., Yu, J., Rose FF Jr, Mattis, V. B., Lorson, C. L., Thomson, J. A., & Svendsen, C. N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–2U1.

    Article  CAS  PubMed  Google Scholar 

  22. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., & Jaenisch, R. (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, H. D., & Chen, G. (2016). In vivo reprogramming for CNS repair: Regenerating neurons from endogenous glial cells. Neuron, 91(4), 728–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., & Jaenisch, R. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J. B., et al. (2009). Oct4-induced Pluripotency in adult neural stem cells. Cell, 136(3), 411–419.

    Article  CAS  PubMed  Google Scholar 

  26. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903), 945–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., & Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.

    Article  CAS  PubMed  Google Scholar 

  28. Stadtfeld, M., Brennand, K., & Hochedlinger, K. (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Current Biology, 18(12), 890–894.

    Article  CAS  PubMed  Google Scholar 

  29. Hanna, J., Markoulaki, S., Schorderet, P., Carey, B. W., Beard, C., Wernig, M., Creyghton, M. P., Steine, E. J., Cassady, J. P., Foreman, R., Lengner, C. J., Dausman, J. A., & Jaenisch, R. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133(2), 250–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Broccoli, V. (2017). Reprogramming of somatic cells: iPS and iN cells. Progress in Brain Research, 230, 53–68.

    Article  PubMed  Google Scholar 

  31. Li, Y. Q., et al. (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 21(1), 196–204.

    Article  CAS  PubMed  Google Scholar 

  32. Greder, L. V., Post, J., & Dutton, J. R. (2016). Using Oct4:MerCreMer lineage tracing to monitor endogenous Oct4 expression during the reprogramming of fibroblasts into induced pluripotent stem cells (iPSCs). Methods in Molecular Biology, 1357, 97–110.

    Article  CAS  PubMed  Google Scholar 

  33. Hou, P. P., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146), 651–654.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, T., et al. (2018). Single-cell RNA-Seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell,23(1), 31.

    Article  CAS  PubMed  Google Scholar 

  35. Ying, Q. L., et al. (2003). BMP induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115(3), 281–292.

    Article  CAS  PubMed  Google Scholar 

  36. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  37. Daheron, L., et al. (2004). LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells, 22(5), 770–778.

    Article  CAS  PubMed  Google Scholar 

  38. Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M. K., Itskovitz-Eldor, J., & Rao, M. S. (2004). Differences between human and mouse embryonic stem cells. Developmental Biology, 269(2), 360–380.

    Article  CAS  PubMed  Google Scholar 

  39. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.

    Article  CAS  PubMed  Google Scholar 

  40. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K., & Bongso, A. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 22(1), 51–64.

    Article  CAS  PubMed  Google Scholar 

  41. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., & Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194), 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schugar, R. C., Robbins, P. D., & Deasy, B. M. (2008). Small molecules in stem cell self-renewal and differentiation. Gene Therapy, 15(2), 126–135.

    Article  CAS  PubMed  Google Scholar 

  43. Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., & Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5668–5673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, S., Do, J. T., Zhang, Q., Yao, S., Yan, F., Peters, E. C., Schöler, H. R., Schultz, P. G., & Ding, S. (2006). Self-renewal of embryonic stem cells by a small molecule. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17266–17271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heo, J. S., Lee, Y. J., & Han, H. J. (2006). EGF stimulates proliferation of mouse embryonic stem cells: Involvement of Ca2+ influx and p44/42 MAPKs. American Journal of Physiology. Cell Physiology, 290(1), C123–C133.

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., Takahashi, J. B., Nishikawa, S., Nishikawa, S., Muguruma, K., & Sasai, Y. (2007). A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology, 25(6), 681–686.

    Article  CAS  PubMed  Google Scholar 

  47. Dutta, D., Ray, S., Home, P., Larson, M., Wolfe, M. W., & Paul, S. (2011). Self-renewal versus lineage commitment of embryonic stem cells: Protein kinase C signaling shifts the balance. Stem Cells, 29(4), 618–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, G., et al. (2014). Blocking autocrine VEGF signaling by sunitinib, an anti-cancer drug, promotes embryonic stem cell self-renewal and somatic cell reprogramming. Cell Research, 24(9), 1121–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aberle, H., Bauer, A., Stappert, J., Kispert, A., & Kemler, R. (1997). Beta-catenin is a target for the ubiquitin-proteasome pathway. The EMBO Journal, 16(13), 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murray, J. T., Campbell, D. G., Morrice, N., Auld, G. C., Shpiro, N., Marquez, R., Peggie, M., Bain, J., Bloomberg, G. B., Grahammer, F., Lang, F., Wulff, P., Kuhl, D., & Cohen, P. (2004). Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. The Biochemical Journal, 384, 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Schöler, H. R., Hayek, A., & Ding, S. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27(12), 2992–3000.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.

    Article  CAS  PubMed  Google Scholar 

  53. Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., Peters, H., Walter, T., Stojkovic, P., Evans, J., Stojkovic, M., & Lako, M. (2006). The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Human Molecular Genetics, 15(11), 1894–1913.

    Article  CAS  PubMed  Google Scholar 

  54. Kolanus, W., & Seed, B. (1997). Integrins and inside-out signal transduction: Converging signals from PKC and PIP3. Current Opinion in Cell Biology, 9(5), 725–731.

    Article  CAS  PubMed  Google Scholar 

  55. Huangfu, D. W., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang, S. J., Park, Y. I., So, B., & Kang, H. G. (2014). Sodium butyrate efficiently converts fully reprogrammed induced pluripotent stem cells from mouse partially reprogrammed cells. Cell Reports, 16(5), 345–354.

    CAS  Google Scholar 

  57. Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3(5), 568–574.

    Article  CAS  PubMed  Google Scholar 

  58. Shi, Y., et al. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6), 525–528.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Q., Xu, X., Li, J., Liu, J., Gu, H., Zhang, R., Chen, J., Kuang, Y., Fei, J., Jiang, C., Wang, P., Pei, D., Ding, S., & Xie, X. (2011). Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Research, 21(10), 1424–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., Chen, K., Li, Y., Liu, X., Xu, J., Zhang, S., Li, F., He, W., Labuda, K., Song, Y., Peterbauer, A., Wolbank, S., Redl, H., Zhong, M., Cai, D., Zeng, L., & Pei, D. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6(1), 71–79.

    Article  CAS  PubMed  Google Scholar 

  61. Xu, X., Wang, Q., Long, Y., Zhang, R., Wei, X., Xing, M., Gu, H., & Xie, X. (2013). Stress-mediated p38 activation promotes somatic cell reprogramming. Cell Research, 23(1), 131–141.

    Article  CAS  PubMed  Google Scholar 

  62. Maherali, N., & Hochedlinger, K. (2009). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology, 19(20), 1718–1723.

    Article  CAS  PubMed  Google Scholar 

  63. Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., Loh, K. M., Carter, A. C., di Giorgio, F. P., Koszka, K., Huangfu, D., Akutsu, H., Liu, D. R., Rubin, L. L., & Eggan, K. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5(5), 491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y., et al. (2012). Small molecules, big roles -- the chemical manipulation of stem cell fate and somatic cell reprogramming. Journal of Cell Science, 125(Pt 23), 5609–5620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., Hahm, H. S., Hao, E., Hayek, A., & Ding, S. (2009). A chemical platform for improved induction of human iPSCs. Nature Methods, 6(11), 805–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J., Zhang, K., & Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7(6), 651–655.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, W., et al. (2011). Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences of the United States of America, 108(45), 18283–18288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, T., Shen, L., Yu, J., Wan, H., Guo, A., Chen, J., Long, Y., Zhao, J., & Pei, G. (2011). Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell, 10(5), 908–911.

    Article  CAS  PubMed  Google Scholar 

  69. Yuan, X., et al. (2011). Brief report: Combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells, 29(3), 549–553.

    Article  CAS  PubMed  Google Scholar 

  70. Li, Y., Zhang, Q., Yin, X., Yang, W., du, Y., Hou, P., Ge, J., Liu, C., Zhang, W., Zhang, X., Wu, Y., Li, H., Liu, K., Wu, C., Song, Z., Zhao, Y., Shi, Y., & Deng, H. (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 21(1), 196–204.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, Y., Zhao, T., Guan, J., Zhang, X., Fu, Y., Ye, J., Zhu, J., Meng, G., Ge, J., Yang, S., Cheng, L., du, Y., Zhao, C., Wang, T., Su, L., Yang, W., & Deng, H. (2015). A XEN-like state bridges somatic cells to Pluripotency during chemical reprogramming. Cell, 163(7), 1678–1691.

    Article  CAS  PubMed  Google Scholar 

  72. Ye, J., Ge, J., Zhang, X., Cheng, L., Zhang, Z., He, S., Wang, Y., Lin, H., Yang, W., Liu, J., Zhao, Y., & Deng, H. (2016). Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Research, 26(1), 34–45.

    Article  CAS  PubMed  Google Scholar 

  73. Li, D., Wang, L., Hou, J., Shen, Q., Chen, Q., Wang, X., du, J., Cai, X., Shan, Y., Zhang, T., Zhou, T., Shi, X., Li, Y., Zhang, H., & Pan, G. (2016). Optimized approaches for generation of integration-free iPSCs from human urine-derived cells with small molecules and autologous feeder. Stem Cell Reports, 6(5), 717–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin, T.X. and S.H. Wu, Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells International, 2015.

    Book  Google Scholar 

  75. Li, X., et al. (2017). Direct reprogramming of fibroblasts via a chemically induced XEN-like state. Cell Stem Cell,21(2), 264.

    Article  CAS  PubMed  Google Scholar 

  76. Han, X., Yu, H., Huang, D., Xu, Y., Saadatpour, A., Li, X., Wang, L., Yu, J., Pinello, L., Lai, S., Jiang, M., Tian, X., Zhang, F., Cen, Y., Fujiwara, Y., Zhu, W., Zhou, B., Zhou, T., Ouyang, H., Wang, J., Yuan, G. C., Duan, S., Orkin, S. H., & Guo, G. (2017). A molecular roadmap for induced multi-lineage trans-differentiation of fibroblasts by chemical combinations. Cell Research, 27(3), 386–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takeda, Y., et al. (2018). Chemical compound-based direct reprogramming for future clinical applications. Bioscience Reports, 38(3).

  78. Li, X., Zuo, X., Jing, J., Ma, Y., Wang, J., Liu, D., Zhu, J., du, X., Xiong, L., du, Y., Xu, J., Xiao, X., Wang, J., Chai, Z., Zhao, Y., & Deng, H. (2015). Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell, 17(2), 195–203.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, M. L., et al. (2016). Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell, 18(5), 653–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fujii, Y., et al. (2019). The direct reprogramming of retinal astrocytes into neurons with small-molecule compounds. Investigative Ophthalmology & Visual Science, 60(9).

  81. Lee, C., Robinson, M., & Willerth, S. M. (2018). Direct reprogramming of Glioblastoma cells into neurons using small molecules. ACS Chemical Neuroscience, 9(12), 3175–3185.

    Article  CAS  PubMed  Google Scholar 

  82. Hu, W. X., et al. (2015). Direct conversion of Normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17(2), 204–212.

    Article  CAS  PubMed  Google Scholar 

  83. Pournasr, B., Asghari-Vostikolaee, M. H., & Baharvand, H. (2015). Transcription factor-mediated reprograming of fibroblasts to hepatocyte-like cells. European Journal of Cell Biology, 94(12), 603–610.

    Article  CAS  PubMed  Google Scholar 

  84. Lim, K. T., Lee, S. C., Gao, Y., Kim, K. P., Song, G., An, S. Y., Adachi, K., Jang, Y. J., Kim, J., Oh, K. J., Kwak, T. H., Hwang, S. I., You, J. S., Ko, K., Koo, S. H., Sharma, A. D., Kim, J. H., Hui, L., Cantz, T., Schöler, H. R., & Han, D. W. (2016). Small molecules facilitate single factor-mediated hepatic reprogramming. Cell Reports, 15(4), 814–829.

    Article  CAS  PubMed  Google Scholar 

  85. Kim, Y., Kang, K., Lee, S. B., Seo, D., Yoon, S., Kim, S. J., Jang, K., Jung, Y. K., Lee, K. G., Factor, V. M., Jeong, J., & Choi, D. (2019). Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. Journal of Hepatology, 70(1), 97–107.

    Article  CAS  PubMed  Google Scholar 

  86. Lalit, P. A., Salick, M. R., Nelson, D. O., Squirrell, J. M., Shafer, C. M., Patel, N. G., Saeed, I., Schmuck, E. G., Markandeya, Y. S., Wong, R., Lea, M. R., Eliceiri, K. W., Hacker, T. A., Crone, W. C., Kyba, M., Garry, D. J., Stewart, R., Thomson, J. A., Downs, K. M., Lyons, G. E., & Kamp, T. J. (2016). Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell, 18(3), 354–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, Y., Cao, N., Huang, Y., Spencer, C. I., Fu, J. D., Yu, C., Liu, K., Nie, B., Xu, T., Li, K., Xu, S., Bruneau, B. G., Srivastava, D., & Ding, S. (2016). Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell, 18(3), 368–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kota, P. S., et al. (2017). Less may be more: Using small molecules to reprogram human cells into functional cardiomyocytes. The Journal of Thoracic and Cardiovascular Surgery, 153(1), 128–130.

    Article  CAS  PubMed  Google Scholar 

  89. Wang, Y. F., et al. (2016). Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules. Cell Stem Cell, 19(4), 449–461.

    Article  CAS  PubMed  Google Scholar 

  90. Zhu, S. Y., et al. (2016). Human pancreatic beta-like cells converted from fibroblasts. Nature Communications, 7.

  91. Koblas, T., Leontovyc, I., Loukotová, S., & Saudek, F. (2019). Reprogramming of human pancreatic Organoid cells into insulin-producing beta-like cells by small molecules and in vitro transcribed modified mRNA encoding Neurogenin 3 transcription factor. Folia Biologica, 65(3), 109–123.

    CAS  PubMed  Google Scholar 

  92. Takahashi, K., & Yamanaka, S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews. Molecular Cell Biology, 17(3), 183–193.

    Article  CAS  PubMed  Google Scholar 

  93. Mahoney, J. E., et al. (2019). Ips cells: Models towards cell-based therapies. Pediatric Pulmonology, 54, S320–S320.

    Google Scholar 

  94. Uchimura, T., Otomo, J., Sato, M., & Sakurai, H. (2017). A human iPS cell myogenic differentiation system permitting high-throughput drug screening. Stem Cell Research, 25, 98–106.

    Article  CAS  PubMed  Google Scholar 

  95. Eglen, R. M., & Reisine, T. (2019). Human iPS cell-derived patient tissues and 3D cell culture part 2: Spheroids, Organoids, and disease modeling. SLAS Technol, 24(1), 18–27.

    PubMed  Google Scholar 

  96. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., & Jaenisch, R. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  97. Huang, X., Wang, Y., Yan, W., Smith, C., Ye, Z., Wang, J., Gao, Y., Mendelsohn, L., & Cheng, L. (2015). Production of gene-corrected adult Beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells, 33(5), 1470–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., Higashi, H., Nagai, T., Katoh, H., Kohda, K., Matsuzaki, Y., Yuzaki, M., Ikeda, E., Toyama, Y., Nakamura, M., Yamanaka, S., & Okano, H. (2010). Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12704–12709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pereira, I. M., et al. (2019). Filling the gap: Neural stem cells as a promising therapy for spinal cord injury. Pharmaceuticals, 12(2).

    Article  CAS  PubMed Central  Google Scholar 

  100. Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M. F., Surmeier, D. J., Kordower, J. H., Tabar, V., & Studer, L. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 480(7378), 547–U177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Takagi, R., et al. (2016). Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. Science Advances, 2(4).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Charles, J., et al. (2019). Multi-organ failure induced by Nivolumab in the context of Allo-stem cell transplantation. Experimental Hematology & Oncology, 8.

  103. Macas, S. C., et al. (2019). Generation and differentiation of an optogenetic human neural stem cell for Parkinson's disease. Human Gene Therapy, 30(11), A105–A105.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No.81802960), the Fundamental Research Funds for the Central Universities (No.22120180035), the Shanghai Municipal Population and Family Planning Commission (No.201640346), the National Natural Science Foundation of China (No.81671468), Shanghai Clinical Medicine Field Project of Science and Technology Innovation Action Program (No.17411951600) and Shanghai Municipal Medical and Health Discipline Construction Projects (No.2017ZZ02015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofang Chen or Xiaoping Wan.

Ethics declarations

Conflict of Interest

There are no conflicts of interest in the studies reported in the paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Guo, Y., Li, C. et al. Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Rev and Rep 16, 511–523 (2020). https://doi.org/10.1007/s12015-020-09965-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09965-w

Keywords

Navigation