Skip to main content

Advertisement

Log in

Decellularized Cell Culture ECMs Act as Cell Differentiation Inducers

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Decellularized tissues and organs have aroused considerable interest for developing functional bio-scaffolds as natural templates in tissue engineering applications. More recently, the use of natural extracellular matrix (ECM) extracted from the in vitro cell cultures for cellular applications have come into question. It is well known that the microenvironment largely defines cellular properties. Thus, we have anticipated that the ECMs of the cells with different potency levels should likely possess different effects on cell cultures. To test this, we have comparatively evaluated the differentiative effects of ECMs derived from the cultures of human somatic dermal fibroblasts, human multipotent bone marrow mesenchymal stem cells, and human induced pluripotent stem cells on somatic dermal fibroblasts. Although challenges remain, the data suggest that the use of cell culture-based extracellular matrices perhaps may be considered as an alternative approach for the differentiation of even somatic cells into other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260, 920–926.

    Article  CAS  PubMed  Google Scholar 

  2. Elcin, Y. M. (2003). Tissue engineering, stem cells and gene therapies. AEMB series: 534. NY & London: Kluwer-Plenum. isbn:0-306-47788-2.

    Book  Google Scholar 

  3. Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5, 1–13.

    Article  CAS  PubMed  Google Scholar 

  4. Badylak, S. F., Taylor, D., & Uygun, K. (2011). Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering, 13, 27–53.

    Article  CAS  PubMed  Google Scholar 

  5. Parmaksiz, M., Elçin, A. E., & Elçin, Y. M. (2019). Decellularized bovine small intestinal submucosa-PCL/hydroxyapatite-based multilayer composite scaffold for hard tissue repair. Materials Science and Engineering: C, 94, 788–797.

    Article  CAS  Google Scholar 

  6. Pati, F., Jang, J., Ha, D. H., et al. (2014). Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications, 5, 3935.

    Article  CAS  PubMed  Google Scholar 

  7. Parmaksiz, M., Elcin, A. E., & Elcin, Y. M. (2017). Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. Journal of Tissue Engineering and Regenerative Medicine, 11, 1754–1765.

    Article  CAS  PubMed  Google Scholar 

  8. Wan, L., Chen, Y., Wang, Z., et al. (2017). Human heart valve-derived scaffold improves cardiac repair in a murine model of myocardial infarction. Scientific Reports, 7, 39988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simões, I. N., Vale, P., Soker, S., et al. (2017). Acellular urethra bioscaffold: Decellularization of whole urethras for tissue engineering applications. Scientific Reports, 7, 41934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cheng, C. W., Solorio, L. D., & Alsberg, E. (2014). Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnology Advances, 32, 462–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sart, S., Ma, T., & Li, Y. (2014). Extracellular matrices decellularized from embryonic stem cells maintained their structure and signaling specificity. Tissue Engineering Part A, 20, 54–66.

    Article  CAS  PubMed  Google Scholar 

  12. Xing, Q., Yates, K., Tahtinen, M., Shearier, E., Qian, Z., & Zhao, F. (2015). Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue EngineeringPart C, Methods, 21, 77–87.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Y., Xu, G. Y., Tang, C., et al. (2015). Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. Journal of Biomedical Materials Research Part B, 103, 670–678.

    Article  CAS  Google Scholar 

  14. Wei, W., Li, J., Chen, S., et al. (2017). In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. Journal of Materials Chemistry B, 5, 2468–2482.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, W., Zhu, Y., Li, J., et al. (2016). Cell-derived extracellular matrix: Basic characteristics and current applications in orthopedic tissue engineering. Tissue Engineering, Part B: Reviews, 22, 193–207.

    Article  Google Scholar 

  16. Parmaksiz, M., Dogan, A., Odabas, S., Elçin, A. E., & Elçin, Y. M. (2016). Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomedical Materials, 11, 22003.

    Article  CAS  Google Scholar 

  17. Dzafic, E., Stimpfel, M., Novakovic, S., Cerkovnik, P., & Virant-Klun, I. (2014). Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. BioMed Research International, 2014, 508216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kulterer, B., Friedl, G., Jandrositz, A., et al. (2007). Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics, 8, 70–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lorenz, K., Sicker, M., Schmelzer, E., Rupf, T., Salvetter, J., Schulz-Siegmund, M., & Bader, A. (2008). Multilineage differentiation potential of human dermal skin-derived fibroblasts. Experimental Dermatology, 17, 925–932.

    Article  CAS  PubMed  Google Scholar 

  20. Abujarour, R., Valamehr, B., Robinson, M., Rezner, B., Vranceanu, F., & Flynn, P. (2013). Optimized surface markers for the prospective isolation of high-quality hiPSCs using flow cytometry selection. Scientific Reports, 3, 1179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gilbert, T. W., Freund, J. M., & Badylak, S. F. (2009). Quantification of DNA in biologic scaffold materials. The Journal of Surgical Research, 152, 135–139.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X. D., Dusevich, V., Feng, J. Q., Manolagas, S. C., & Jilka, R. L. (2007). Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. Journal of Bone and Mineral Research, 22, 1943–1956.

    Article  CAS  PubMed  Google Scholar 

  23. Mikami, T., & Kitagawa, H. (2017). Sulfated glycosaminoglycans: Their distinct roles in stem cell biology. Glycoconjugate Journal, 34, 725–735.

    Article  CAS  PubMed  Google Scholar 

  24. Guilak, F., Cohen, D. M., Estes, B. T., Gimble, J. M., Liedtke, W., & Chen, C. S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5, 17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uygun, B. E., Soto-Gutierrez, A., Yagi, H., Izamis, et al. (2010). Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 16, 814–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishio, K., & Inoue, A. (2005). Senescence-associated alterations of cytoskeleton: Extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts. Histochemistry and Cell Biology, 123, 263–273.

    Article  CAS  PubMed  Google Scholar 

  27. Ruoslahti, E. (1984). Fibronectin in cell adhesion and invasion. Cancer Metastasis Reviews, 3, 43–51.

    Article  CAS  PubMed  Google Scholar 

  28. Kinsey, R., Williamson, M. R., Chaudhry, S., Mellody, K. T., McGovern, A., Takahashi, S., Shuttleworth, C. A., & Kielty, C. M. (2008). Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. Journal of Cell Science, 121, 2696–2704.

    Article  CAS  PubMed  Google Scholar 

  29. Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta, 1840, 2506–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y., Zheng, Y. L., Qiu, D. B., Sun, Y. P., Kuang, S. J., Xu, Y., He, F., Gong, Y. H., & Zhang, Z. G. (2015). An extracellular matrix culture system for induced pluripotent stem cells derived from human dental pulp cells. European Review for Medical and Pharmacological Sciences, 19, 4035–4046.

    CAS  PubMed  Google Scholar 

  31. McIntosh, L., & Walle, C.F. van der. (2011). Control of mammalian cell behaviour through mimicry of the extracellular matrix environment. On Biomimetics, Dr. Lilyana Pramatarova (Ed.), InTech.

  32. Kumada, Y., & Zhang, S. (2010). Significant type I and type III collagen production from human periodontal ligament fibroblasts in 3D peptide scaffolds without extra growth factors. PLoS One, 5, e10305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Köllmer, M., Keskar, V., Hauk, T. G., Collins, J. M., Russell, B., & Gemeinhart, R. A. (2012). Stem cell-derived extracellular matrix enables survival and multilineage differentiation within superporous hydrogels. Biomacromolecules, 13, 963–973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Atyabi, S. M., Atoon, S., Irani, S., Khorasani, M. T., & Joupari, M. D. (2016). Fibroblast cell behavior study on chitosan/laminin scaffolds for tissue engineering. Minerva Biotecnologica, 4, 187–192.

    Google Scholar 

  35. Hynes, R. O. (2009). Extracellular matrix: Not just pretty fibrils. Science, 326, 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kagiwada, H., Yashiki, T., Ohshima, A., Tadokoro, M., Nagaya, N., & Ohgushi, H. (2008). Human mesenchymal stem cells as a stable source of VEGF-producing cells. Journal of Tissue Engineering and Regenerative Medicine, 2, 184–189.

    Article  CAS  PubMed  Google Scholar 

  37. Prewitz, M. C., Seib, F. P., von Bonin, M., Friedrichs, J., Stißel, A., Niehage, C., Müller, K., Anastassiadis, K., Waskow, C., Hoflack, B., Bornhäuser, M., & Werner, C. (2013). Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods, 10, 788–794.

    Article  CAS  PubMed  Google Scholar 

  38. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., & Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 11307–11312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, L., Asteriou, T., Bernert, B., Heldin, C. H., & Heldin, P. (2007). Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: Importance of hyaluronan for the mitogenic response of PDGF-BB. The Biochemical Journal, 404, 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, C., Lin, S., & Yu, H. (1997). Effect of growth factors on dermal fibroblast contraction in normal skin and hypertrophic scar. Journal of Dermatological Science, 14, 162–169.

    Article  CAS  PubMed  Google Scholar 

  41. Murillo, J., Wang, Y., Xu, X., Klebe, R. J., Chen, Z., Zardeneta, G., Pal, S., Mikhailova, M., & Steffensen, B. (2008). Advanced glycation of type I collagen and fibronectin modifies periodontal cell behavior. Journal of Periodontology, 79, 2190–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Windmolders, S., Boeck, A. D., Koninckx, R., et al. (2014). Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident cardiac atrial appendage stem cells. Journal of Molecular and Cellular Cardiology, 66, 177–188.

    Article  CAS  PubMed  Google Scholar 

  43. Junker, J. P., Sommar, P., Skog, M., Johnson, H., & Kratz, G. (2010). Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts. Cells, Tissues, Organs, 191, 105–118.

    Article  PubMed  Google Scholar 

  44. Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabé-Heider, F., Sadikot, A., Kaplan, D. R., & Miller, F. D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778–784.

    Article  CAS  PubMed  Google Scholar 

  45. Bussmann, B. M., Reiche, S., Marí-Buyé, N., Castells-Sala, C., Meisel, H. J., & Semino, C. E. (2016). Chondrogenic potential of human dermal fibroblasts in a contractile, soft, self-assembling, peptide hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 10, E54–E62.

    Article  CAS  PubMed  Google Scholar 

  46. Dyer, L. A., Pi, X., & Patterson, C. (2014). The role of BMPs in endothelial cell function and dysfunction. Trends in Endocrinology and Metabolism, 25, 472–480.

    Article  CAS  PubMed  Google Scholar 

  47. Hee, C. K., Jonikas, M. A., & Nicoll, S. B. (2006). Influence of three-dimensional scaffold on the expression of osteogenic differentiation markers by human dermal fibroblasts. Biomaterials, 27, 875–884.

    Article  CAS  PubMed  Google Scholar 

  48. Aloise, A. C., Pereira, M. D., Duailibi, S. E., Gragnani, A., & Ferreira, L. M. (2014). TGF-β1 on induced osteogenic differentiation of human dermal fibroblast. Acta Cirúrgica Brasileira, 29(Suppl 1), 01–06.

    Article  Google Scholar 

  49. Midgley, A. C., Rogers, M., Hallett, M. B., Clayton, A., Bowen, T., Phillips, A. O., & Steadman, R. (2013). Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. The Journal of Biological Chemistry, 288, 14824–14838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar, A., Salimath, B. P., Stark, G. B., & Finkenzeller, G. (2010). Platelet-derived growth factor receptor signaling is not involved in osteogenic differentiation of human mesenchymal stem cells. Tissue Engineering. Part A, 16, 983–993.

    Article  CAS  PubMed  Google Scholar 

  51. Li, A., Xia, X., Yeh, J., et al. (2014). PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One, 9, e113785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Alt, E., Yan, Y., Gehmert, S., Song, Y. H., Altman, A., Gehmert, S., Vykoukal, D., & Bai, X. (2011). Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biology of the Cell, 103, 197–208.

    Article  CAS  PubMed  Google Scholar 

  53. Ulrich, C., Hart, M. L., Rolaufs, B., et al. (2012). Mesenchymal stromal cells and fibroblasts. Journal of Tissue Science & Engineering, 3, e109.

    Article  CAS  Google Scholar 

  54. Zangrossi, S., Marabese, M., Broggini, M., Giordano, R., D'Erasmo, M., Montelatici, E., Intini, D., Neri, A., Pesce, M., Rebulla, P., & Lazzari, L. (2007). Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells, 25, 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  55. Page, R. L., Ambady, S., Holmes, W. F., Vilner, L., Kole, D., Kashpur, O., Huntress, V., Vojtic, I., Whitton, H., & Dominko, T. (2009). Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning and Stem Cells, 11, 417–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ng, F., Boucher, S., Koh, S., Sastry, K. S., Chase, L., Lakshmipathy, U., Choong, C., Yang, Z., Vemuri, M. C., Rao, M. S., & Tanavde, V. (2008). PDGF, TGF-, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood, 112, 295–307.

    Article  CAS  PubMed  Google Scholar 

  57. Yamanaka, S., Yokote, S., Yamada, A., et al. (2014). Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation. PLoS One, 9, e102311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zanetta, L., Marcus, S. G., Vasile, J., Dobryansky, M., Cohen, H., Eng, K., Shamamian, P., & Mignatti, P. (2000). Expression of von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: A potential method for objective assessment of tumor angiogenesis. International Journal of Cancer, 85, 281–288.

    Article  CAS  PubMed  Google Scholar 

  59. Pusztaszeri, M. P., Seelentag, W., & Bosman, F. T. (2006). Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. The Journal of Histochemistry and Cytochemistry, 54, 385–395.

    Article  CAS  PubMed  Google Scholar 

  60. Blasi, A., Martino, C., Balducci, L., et al. (2011). Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vascular Cell, 3, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmidt, M., Gutknecht, D., Simon, J. C., Schulz, J. N., Eckes, B., Anderegg, U., & Saalbach, A. (2015). Controlling the balance of fibroblast proliferation and differentiation: Impact of Thy-1. The Journal of Investigative Dermatology, 135, 1893–1902.

    Article  CAS  PubMed  Google Scholar 

  62. Halfon, S., Abramov, N., Grinblat, B., & Ginis, I. (2011). Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells and Development, 20, 53–66.

    Article  CAS  PubMed  Google Scholar 

  63. Lv, F. J., Tuan, R. S., Cheung, K. M., & Leung, V. Y. (2014). Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells, 32, 1408–1419.

    Article  CAS  PubMed  Google Scholar 

  64. Velazquez, O. C., Snyder, R., Liu, Z. J., Fairman, R. M., & Herlyn, M. (2002). Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. The FASEB Journal, 16, 1316–1318.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by The Scientific and Technological Research Council of Turkey, Ankara, Turkey (Grant No. 214 M159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Murat Elçin.

Ethics declarations

Disclosure of Interest

Y.M.E. is the founder and shareholder of Biovalda Health Technologies, Inc. (Ankara, Turkey). The authors have patent applications in relation to regenerative biomaterials. The authors declare no competing financial interests in relation to this particular article.

Consent for Publication

This manuscript has been approved by all authors. The authors are alone responsible for the content and writing of the paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmaksiz, M., Elçin, A.E. & Elçin, Y.M. Decellularized Cell Culture ECMs Act as Cell Differentiation Inducers. Stem Cell Rev and Rep 16, 569–584 (2020). https://doi.org/10.1007/s12015-020-09963-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09963-y

Keywords

Navigation