Skip to main content
Log in

Electronic structure of La (0001) thin films on W (110) studied by photoemission spectroscopy and first principle calculations

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Surface states that have a dz2 symmetry around the center of the surface Brillouin zone (BZ) have been regarded common in closely-packed surfaces of rare-earth metals. In this work, we report the electronic structure of dhcp La (0001) thin films by ultrahigh energy resolution angle-resolved photoemission spectroscopy (ARPES) and first principle calculations. Our first principle analysis is based on the many-body approach, therefore, density function theory (DFT) combined with dynamic mean-field theory (DMFT). The experimentally observed Fermi surface topology and band structure close to the Fermi energy qualitatively agree with first principle calculations when using a renormalization factor of between 2 and 3 for the DFT bands. Photon energy dependent ARPES measurements revealed clear kZ dependence for the hole-like band around the BZ center, previously regarded as a surface state. The obtained ARPES results and theoretical calculations suggest that the major bands of dhcp La (0001) near the Fermi level originate from the bulk La 5d orbits as opposed to originating from the surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Johnson, and D. K. Finnemore, Phys. Rev. 158, 376 (1967).

    ADS  Google Scholar 

  2. G. Fleming, S. Liu, and T. Loucks, Phys. Rev. Lett. 21, 1524 (1968).

    ADS  Google Scholar 

  3. H. W. Myron, and S. H. Liu, Phys. Rev. B 1, 2414 (1970).

    ADS  Google Scholar 

  4. H. Balster, and J. Wittig, J. Low Temp. Phys. 21, 377 (1975).

    ADS  Google Scholar 

  5. D. Glotzel, and L. Fritsche, Phys. Stat. Sol. B 79, 85 (1977).

    ADS  Google Scholar 

  6. D. Glotzel, J. Phys. F-Met. Phys. 8, L163 (1978).

    ADS  Google Scholar 

  7. W. E. Pickett, A. J. Freeman, and D. D. Koelling, Phys. Rev. B 22, 2695 (1980).

    ADS  Google Scholar 

  8. A. K. McMahan, H. L. Skriver, and B. Johansson, Phys. Rev. B 23, 5016 (1981).

    ADS  Google Scholar 

  9. Z. W. Lu, D. J. Singh, and H. Krakauer, Phys. Rev. B 39, 4921 (1989).

    ADS  Google Scholar 

  10. H. L. Skriver, and I. Mertig, Phys. Rev. B 41, 6553 (1990).

    ADS  Google Scholar 

  11. G. Y. Gao, Y. L. Niu, T. Cui, L. J. Zhang, Y. Li, Y. Xie, Z. He, Y. M. Ma, and G. T. Zou, J. Phys.-Condens. Matter 19, 425234 (2007).

    ADS  Google Scholar 

  12. L. W. Nixon, D. A. Papaconstantopoulos, and M. J. Mehl, Phys. Rev. B 78, 214510 (2008).

    ADS  Google Scholar 

  13. T. Jarlborg, G. Anderson, B. Sundqvist, and O. Rapp, J. Phys.-Condens. Matter 1, 8407 (2009).

    ADS  Google Scholar 

  14. S. Bagci, H. M. Tütüncü, S. Duman, and G. P. Srivastava, Phys. Rev. B 81, 144507 (2010).

    ADS  Google Scholar 

  15. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Proc. Natl. Acad. Sci. 114, 6990 (2017).

    ADS  Google Scholar 

  16. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature 569, 528 (2019).

    ADS  Google Scholar 

  17. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).

    ADS  Google Scholar 

  18. D. M. Wieliczka, C. G. Olson, and D. W. Lynch, Phys. Rev. Lett. 52, 2180 (1984).

    ADS  Google Scholar 

  19. A. V. Fedorov, C. Laubschat, K. Starke, E. Weschke, K. U. Barholz, and G. Kaindl, Phys. Rev. Lett. 70, 1719 (1993).

    ADS  Google Scholar 

  20. A. V. Fedorov, A. Höhr, E. Weschke, K. Starke, V. K. Adamchuk, and G. Kaindl, Phys. Rev. B 49, 5117 (1994).

    ADS  Google Scholar 

  21. E. Weschke, and G. Kaindl, J. Electron Spectr. Relat. Phenom. 75, 233 (1995).

    Google Scholar 

  22. E. Weschke, A. Höhr, G. Kaindl, S. L. Molodtsov, S. Danzenber, M. Richter, and C. Laubschat, Phys. Rev. B 58, 3682 (1998).

    ADS  Google Scholar 

  23. D. Wegner, A. Bauer, Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, P. M. Echenique, and G. Kaindl, Phys. Rev. B 73, 115403 (2006).

    ADS  Google Scholar 

  24. Y. Enta, O. Morimoto, H. Kato, and Y. Sakisaka, World J. Cond. Matter Phys. 06, 17 (2016).

    ADS  Google Scholar 

  25. D. Q. Li, C. W. Hutchings, P. A. Dowben, C. Hwang, R. T. Wu, M. Onellion, A. B. Andrews, and J. L. Erskine, J. Magn. Magn. Mater. 99, 85 (1991).

    ADS  Google Scholar 

  26. R. Q. Wu, C. Li, A. J. Freeman, and C. L. Fu, Phys. Rev. B 44, 9400 (1991).

    ADS  Google Scholar 

  27. S. C. Wu, H. Li, Y. S. Li, D. Tian, J. Quinn, F. Jona, and D. Fort, Phys. Rev. B 44, 13720 (1991).

    ADS  Google Scholar 

  28. S. S. Dhesi, R. I. R. Blyth, R. J. Cole, P. A. Gravil, and S. D. Barrett, J. Phys.-Condens. Matter 4, 9811 (1992).

    ADS  Google Scholar 

  29. M. Bodenbach, A. Höhr, C. Laubschat, G. Kaindl, and M. Methfessel, Phys. Rev. B 50, 14446 (1994).

    ADS  Google Scholar 

  30. E. Weschke, C. Schüssler-Langeheine, R. Meier, A. V. Fedorov, K. Starke, F. Hübinger, and G. Kaindl, Phys. Rev. Lett. 77, 3415 (1996).

    ADS  Google Scholar 

  31. M. Bode, M. Getzlaff, S. Heinze, R. Pascal, and R. Wiesendanger, Appl. Phys. A-Mater. Sci. Processing 66, S121 (1998).

    ADS  Google Scholar 

  32. A. Bauer, A. Mühlig, D. Wegner, and G. Kaindl, Phys. Rev. B 65, 075421 (2002).

    ADS  Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  34. G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

    ADS  Google Scholar 

  35. K. Haule, C. H. Yee, and K. Kim, Phys. Rev. B 81, 195107 (2010).

    ADS  Google Scholar 

  36. P. Werner, A. Comanac, L. De'Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).

    ADS  Google Scholar 

  37. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.- Condens. Matter 9, 767 (1997).

    ADS  Google Scholar 

  38. M. Jarrell, and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

    ADS  MathSciNet  Google Scholar 

  39. A. N. Chantis, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 96, 086405 (2006).

    ADS  Google Scholar 

  40. T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B 76, 165106 (2007).

    ADS  Google Scholar 

  41. Q. Y. Chen, W. Feng, D. H. Xie, X. C. Lai, X. G. Zhu, and L. Huang, Phys. Rev. B 97, 155155 (2018).

    ADS  Google Scholar 

  42. F. Schiller, M. Heber, V. D. P. Servedio, and C. Laubschat, Phys. Rev. B 68, 233103 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Huang or ShiYong Tan.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303104), the Science Challenge Project (Grant No. TZ2016004), and the National Natural Science Foundation of China (Grant Nos. 11874330, 11774320, U1630248, 11504341, and 11504342). We gratefully acknowledge helpful discussions with Prof. DongLai Feng, and Dr. Bo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Chen, Q., Lai, X. et al. Electronic structure of La (0001) thin films on W (110) studied by photoemission spectroscopy and first principle calculations. Sci. China Phys. Mech. Astron. 63, 267411 (2020). https://doi.org/10.1007/s11433-019-1501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1501-8

Key words

Navigation