Skip to main content
Log in

Identifying the viscoelastic properties of soft matter from the indentation response of a hard film-soft substrate system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale, but still faces challenges by these unique properties as well as the consequent strong surface adhesion, including the strong nonlinear effect, unclear judgment of the contact point, difficulties in estimating the contact area, and the risk of the indenter piercing the sample. Here we propose a two-step method to solve these problems: lay a hard film on a soft matter, and obtain the viscoelastic properties of this soft matter through the indentation response of this composite structure. We first establish a theoretical indentation model of the hard film-soft substrate system based on the theory of plates, elastic-viscoelastic correspondence principle and Boltzmann superposition principle. To verify the correctness of this method, we measure the mechanical properties of the methyl vinyl silicone rubber (MVSR) covered by a Cu nanofilm. Finally, we test the effectiveness and error sensitivity of this method with the finite element method (FEM). The results show that our method can accurately measure the mechanical properties of soft matter, while effectively circumventing the problems of the traditional indentation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu, and Y. Yang, J. Mater. Chem. 20, 9635 (2010).

    Article  Google Scholar 

  2. Z. Chen, and H. Lu, J. Mater. Chem. 22, 12479 (2012).

    Article  ADS  Google Scholar 

  3. Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, ACS Nano 4, 5263 (2010).

    Article  Google Scholar 

  4. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, Adv. Mater. 24, 772 (2012).

    Article  Google Scholar 

  5. D. H. Ho, Q. Sun, S. Y. Kim, J. T. Han, D. H. Kim, and J. H. Cho, Adv. Mater. 28, 2601 (2016).

    Article  Google Scholar 

  6. A. Nautiyal, M. Qiao, J. E. Cook, X. Zhang, and T. S. Huang, Appl. Surf. Sci. 427, 922 (2018).

    Article  ADS  Google Scholar 

  7. A. S. Mijailovic, B. Qing, D. Fortunato, and K. J. Van Vliet, Acta Biomater. 71, 388 (2018).

    Article  Google Scholar 

  8. Z. Tan, S. Chen, X. Peng, L. Zhang, and C. Gao, Science 360, 518 (2018).

    Article  ADS  Google Scholar 

  9. J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).

    Article  ADS  Google Scholar 

  10. D. E. Discher, P. Janmey, and Y. L. Wang, Science 310, 1139 (2005).

    Article  ADS  Google Scholar 

  11. S. E. Cross, Y. S. Jin, J. Tondre, R. Wong, J. Y. Rao, and J. K. Gimzewski, Nanotechnology 19, 384003 (2008).

    Article  Google Scholar 

  12. J. F. Chen, K. J. Xu, L. Q. Tang, Z. J. Liu, and L. C. Zhou, Mech. Mater. 119, 42 (2018).

    Article  Google Scholar 

  13. Y. T. Cheng, W. Ni, and C. M. Cheng, Phys. Rev. Lett. 97, 075506 (2006).

    Article  ADS  Google Scholar 

  14. S. C. Hunter, J. Mech. Phys. Solids 8, 219 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  15. Y. T. Cheng, and C. M. Cheng, Appl. Phys. Lett. 87, 111914 (2005).

    Article  ADS  Google Scholar 

  16. L. Cheng, X. Xia, W. Yu, L. E. Scriven, and W. W. Gerberich, J. Polym. Sci. B Polym. Phys. 38, 10 (2000).

    Article  ADS  Google Scholar 

  17. L. Cheng, X. Xia, L. E. Scriven, and W. W. Gerberich, Mech. Mater. 37, 213 (2005).

    Article  Google Scholar 

  18. Y. T. Cheng, and C. M. Cheng, Philos. Mag. Lett. 81, 9 (2001).

    Article  ADS  Google Scholar 

  19. M. M. Chaudhri, Acta Mater. 46, 3047 (1998).

    Article  ADS  Google Scholar 

  20. M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh, and S. Suresh, Acta Mater. 49, 3899 (2001).

    Article  ADS  Google Scholar 

  21. M. R. Van Landingham, N. K. Chang, P. L. Drzal, C. C. White, and S. H. Chang, J. Polym. Sci. B Polym. Phys. 43, 1794 (2005).

    Article  ADS  Google Scholar 

  22. G. M. Odegard, T. S. Gates, and H. M. Herring, Exp. Mech. 45, 130 (2005).

    Article  Google Scholar 

  23. M. E. McConney, S. Singamaneni, and V. V. Tsukruk, Polym. Rev. 50, 235 (2010).

    Article  Google Scholar 

  24. Y. Liu, Y. Wei, and P. Chen,Int. J. Mech. Sci. 151, 214 (2019).

    Article  Google Scholar 

  25. G. Cao, Y. Liu, and T. Niu, Int. J. Mech. Sci. 137, 96 (2018).

    Article  Google Scholar 

  26. Y. Liu, Y. Wei, and P. Chen, Soft Matter 15, 5760 (2019).

    Article  ADS  Google Scholar 

  27. G. M. Pharr, and W. C. Oliver, MRS Bull. 17, 28 (1992).

    Article  Google Scholar 

  28. S. Suresh, T. G. Nieh, and B. W. Choi, Scripta Mater. 41, 951 (1999).

    Article  Google Scholar 

  29. D. Y. W. Yu, and F. Spaepen, J. Appl. Phys. 95, 2991 (2004).

    Article  ADS  Google Scholar 

  30. X. Wei, D. Lee, S. Shim, X. Chen, and J. W. Kysar, Scripta Mater. 57, 541 (2007).

    Article  Google Scholar 

  31. R. Whiting, and M. A. Angadi, Meas. Sci. Technol. 1, 662 (1990).

    Article  ADS  Google Scholar 

  32. M. T. Lin, C. J. Tong, and K. S. Shiu, Exp. Mech. 50, 55 (2010).

    Article  Google Scholar 

  33. J. Y. Park, S. J. Yoo, E. J. Lee, D. H. Lee, J. Y. Kim, and S. H. Lee, BioChip J. 4, 230 (2010).

    Article  Google Scholar 

  34. D. S. Um, S. Lim, Y. Lee, H. Lee, H. Kim, W. C. Yen, Y. L. Chueh, and H. Ko, ACS Nano 8, 3080 (2014).

    Article  Google Scholar 

  35. C. Ganser, C. Czibula, D. Tscharnuter, T. Schöberl, C. Teichert, and U. Hirn, T. Soft Matter 14, 140 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YueGuang Wei.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11432014, 11521202, 11672301, and 11890681).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wei, Y. & Long, H. Identifying the viscoelastic properties of soft matter from the indentation response of a hard film-soft substrate system. Sci. China Phys. Mech. Astron. 63, 244612 (2020). https://doi.org/10.1007/s11433-019-1482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1482-y

Keywords

Navigation