Skip to main content
Log in

The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3 cotransporter) in the ctenidium during light exposure

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Giant clams flourish in nutrient-poor waters of tropical Indo-Pacific because they live in symbiosis with extracellular dinoflagellates (zooxanthellae) and receive photosynthates from them. Zooxanthellae have no access to the ambient seawater and are nitrogen-deficient; hence, they need to obtain nitrogen from the host clam. Unlike algae and plants, aquatic animals generally absorb little nitrate (NO3) from the environment. Here, we report for the first time that the fluted giant clam, Tridacna squamosa, absorbed NO3 from the external seawater at a rate faster in light than in darkness. In addition, its ctenidium (gill) expressed a homolog of SIALIN (SIALIN-like), which is known to function as an electrogenic H+:2NO3 cotransporter and facilitate NO3 excretion in acinar cells of human salivary glands. The complete cDNA coding sequence of SIALIN-like of T. squamosa, which was derived from the host clam, consisted of 1905 bp and encoded for 634 amino acids of 69.6 kDa. It had the strongest expression in the ctenidium and weak expression in the colorful outer mantle and hepatopancreas. Being localized in the apical membrane of the epithelial cells at the tips of ctenidial filaments of T. squamosa, SIALIN-like was well positioned to absorb NO3 from the ambient seawater. Furthermore, the transcript level and protein abundance of SIALIN-like/SIALIN-like increased significantly in the ctenidium during 12 h of light exposure, denoting its possible role in light-enhanced NO3 absorption in T. squamosa. While scleractinian corals are known to absorb exogenous NO3 to benefit their intracellular zooxanthellae, they display light-independent NO3absorption. Hence, the ability of T. squamosa to conduct light-enhanced NO3 absorption could be related to the extracellular location of its zooxanthellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734. https://doi.org/10.1038/srep39734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badgley BD, Lipschultz F, Sebens KP (2006) Nitrate uptake by the reef coral Diploria strigosa: effects of concentration, water flow, and irradiance. Mar Biol 149:327–338

    CAS  Google Scholar 

  • Bernhard A (2010) The nitrogen cycle: processes, players, and human impact. Nature Education Knowledge 3:25

    Google Scholar 

  • Boo MV, Hiong KC, Choo CYL, Cao-Pham AH, Wong WP, Chew SF, Ip YK (2017) The inner mantle of the giant clam, Tridacna squamosa, expresses a basolateral Na+/K+-ATPase α-subunit, which displays light-dependent gene and protein expression along the shell-facing epithelium. PLoS ONE 12:e0186865. https://doi.org/10.1371/journal.pone.0186865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boo MV, Hiong KC, Goh EJK, Choo CYL, Wong WP, Chew SF, Ip YK (2018) The ctenidium of the giant clam, Tridacna squamosa, expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion. J Comp Physiol B 188:765–777

    CAS  PubMed  Google Scholar 

  • Boo MV, Hiong KC, Wong WP, Chew SF, Ip YK (2019) Shell formation in the giant clam, Tridacna squamosa, may involve an apical Na+/Ca2+ Exchanger 3 homolog in the shell-facing epithelium of the whitish inner mantle, which displays light-enhanced gene and protein expression. Coral Reefs 38:1173–1186

    Google Scholar 

  • Braga ED, Berbel GBB, Chiozzini VG, Andrade NCG (2017) Dissolved organic nutrients (C, N, P) in seawater on the continental shelf in the Southwestern South Atlantic with emphasis State Marine Park of Laje de Santos (SMPLS) - São Paulo – Brazil. Braz J Oceanogr 65:614–627

    Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ Int 32:831–849

    CAS  PubMed  Google Scholar 

  • Campbell JW (1991) Excretory nitrogen metabolism. In: Prosser CL (ed) Environmental and metabolic animal physiology. Comparative animal physiology, 4th edn. Wiley-Interscience, New York, pp 277–324

    Google Scholar 

  • Cao-Pham AH, Hiong KC, Boo MV, Choo CYL, Pang CZ, Wong WP, Neo ML, Chew SF, Ip YK (2019a) Molecular characterization cellular localization and light-enhanced expression of Beta-Na+/H+ Exchanger-like in the whitish inner mantle of the giant clam Tridacna squamosa denote its role in light-enhanced shell formation. Gene 695:101–112. https://doi.org/10.1016/j.gene.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  • Cao-Pham AH, Hiong KC, Boo MV, Choo CYL, Wong WP, Chew SF, Ip YK (2019b) Calcium absorption in the fluted giant clam, Tridacna squamosa, may involve a homolog of Voltage-gated Calcium Channel subunit α1 that has an apical localization and displays light-enhanced protein expression in the ctenidium. J Comp Physiol B 189:693–706

    CAS  PubMed  Google Scholar 

  • Chan CYL, Hiong KC, Boo MV, Choo CYL, Wong WP, Chew SF, Ip YK (2018) Light exposure enhances urea absorption in the fluted giant clam, Tridacna squamosa, and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like, in its ctenidium. J Exp Biol 221:jeb176313. https://doi.org/10.1242/jeb.176313

    Article  PubMed  Google Scholar 

  • Chan CYL, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF, Ip YK (2019) Illuminated fluted giant clams, Tridacna squamosa, upregulate protein abundance of an apical Na+: Glucose Cotransporter 1 homolog in the ctenidium, and increase exogenous glucose absorption that can be impeded by urea. J Exp Biol 222:jeb195644. https://doi.org/10.1242/jeb.195644

    Article  PubMed  Google Scholar 

  • Chew SF, Koh CZY, Hiong KC, Choo CYL, Wong WP, Neo ML, Ip YK (2019) Light-enhanced expression of Carbonic Anhydrase 4-like supports shell formation in the fluted giant clam Tridacna squamosa. Gene 683:101–112. https://doi.org/10.1016/j.gene.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  • Collos Y, Berges JA (2003) Nitrogen metabolism in phytoplankton. In: Duarte CM (ed) Encyclopedia of life support systems. EOLSS Publishers (UNESCO), https://www.eolss.net

  • Courville P, Quick M, Reimer RJ (2010) Structure-function studies of the SLC17 transporter Sialin identify crucial residues and substrate-induced conformational changes. J Biol Chem 285:19316–19323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of Cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fam RRS, Hiong KC, Choo CYL, Wong WP, Chew SF, Ip YK (2018) Molecular characterization of a novel algal glutamine synthetase (GS and an algal glutamate synthase (GOGAT) from the colourful outer mantle of the giant clam, Tridacna squamosa. Gene 656:40–52

    CAS  PubMed  Google Scholar 

  • Felsentein J (1989) PHYLIP–phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fitt WK, Rees TAV, Braley RD, Lucas JS, Yellowlees D (1993a) Nitrogen flux in giant clams: size-dependency and relationship to zooxanthellae density and clam biomass in the uptake of dissolved inorganic nitrogen. Mar Biol 117:381–386

    CAS  Google Scholar 

  • Fitt WK, Heslinga GA, Watson TC (1993b) Utilisation of dissolved inorganic nutrients in growth and mariculture of the tridacnid clam Tridacna derasa. Aquaculture 109:27–38

    CAS  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. BBA-Biomembranes 1465:219–235

    CAS  PubMed  Google Scholar 

  • Franzisket L (1973) Uptake and accumulation of nitrate and nitrite by reef corals. Naturwissenschaften 60:552

    CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gowen RJ, Tett P, Jones KJ (1992) Predicting marine eutrophication: the yield of chlorophyll from nitrogen in Scottish coastal waters. Mar Ecol Prog Ser 85:153–161

    CAS  Google Scholar 

  • Griffiths CL, Klumpp DW (1996) Relationships between size, mantle area and zooxanthellae numbers in five species of giant clam (Tridacnidae). Mar Eco Prog Ser 137:139–147

    Google Scholar 

  • Grover R, Maguer J-F (2003) Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol Oceanogr 48:2266–2274

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hastie LC, Heslinga GA, Watson TC (1988) Lab test result: fertilizer speeds clam growth. Micronesian Mariculture Demonstration Center Bulletin Volume 3, Micronesian Mariculture Demonstration Centre, Palau

  • Hastie L, Watson TC, Isamu T, Heslinga GA (1992) Effect of nutrient enrichment on Tridacna derasa seed: dissolved inorganic nitrogen increases growth rate. Aquaculture 106:41–49

    CAS  Google Scholar 

  • Hawkins AJS, Klumpp DW (1995) Nutrition of the giant clam Tridacna gigas (L.). II. Relative contributions of filter-feeding and the ammonium-nitrogen acquired and recycled by symbiotic alga towards total nitrogen requirements for tissue growth and metabolism. J Exp Mar Biol Ecol 190:263–290

    Google Scholar 

  • Hernawan UE (2008) Review: symbiosis between the giant clams (Bivalvia: Cardiidae) and zooxanthellae (Dinophyceae). Biodiversitas 9:53–58

    Google Scholar 

  • Hiong KC, Cao-Pham AH, Choo CYL, Boo MV, Wong WP, Chew SF, Ip YK (2017a) Light-dependent expression of a Na+/H+ exchanger 3-like transporter in the ctenidium of the giant clam, Tridacna squamosa, can be related to increased H+ excretion during light-enhanced calcification. Physiol Rep 5:e13209. https://doi.org/10.14814/phy2.13209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiong KC, Choo CYL, Boo MV, Ching B, Wong WP, Chew SF, Ip YK (2017b) A light-dependent ammonia-assimilating mechanism in the ctenidia of a giant clam. Coral Reefs 36:311–323. https://doi.org/10.1007/s00338-016-1502-4

    Article  Google Scholar 

  • Hiong KC, Koh CZY, Boo MV, Choo CYL, Wong WP, Chew SF, Ip YK (2018) The colorful mantle of the giant clam, Tridacna squamosa, expresses a light-dependent manganese superoxide dismutase to ameliorate oxidative stresses due to its symbiotic association with zooxanthellae. Coral Reefs 37:1039–1051. https://doi.org/10.1007/s00338-018-01738-9

    Article  Google Scholar 

  • Ip YK, Ching B, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF (2015) Light induces changes in activities of Na+/K+-ATPase, H+/K+-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam Tridacna squamosa. Front Physiol 6:68. https://doi.org/10.3389/fphys.2015.00068

    Article  PubMed  PubMed Central  Google Scholar 

  • Ip YK, Hiong KC, Goh EJK, Boo MV, Choo CYL, Ching B, Wong WP, Chew SF (2017) The whitish inner mantle of the giant clam, Tridacna squamosa, expresses an apical plasma membrane Ca2+-ATPase (PMCA) which displays light-dependent gene and protein expressions. Front Physiol 8:781. https://doi.org/10.3389/fphys.2017.00781

    Article  PubMed  PubMed Central  Google Scholar 

  • Ip YK, Koh CZY, Hiong KC, Choo CYL, Boo MV, Wong WP, Neo ML, Chew SF (2017) Carbonic Anhydrase 2-like in the giant clam, Tridacna squamosa: characterization, localization, response to light, and possible role in the transport of inorganic carbon from the host to its symbionts. Physiol Rep 5:13494. https://doi.org/10.14814/phy2.13494

    Article  CAS  Google Scholar 

  • Ip YK, Hiong KC, Lim LJY, Choo CYL, Boo MV, Wong WP, Neo ML, Chew SF (2018) Molecular characterization, light-dependent expression, and cellular localization of a host vacuolar-type H+-ATPase (VHA) subunit A in the giant clam, Tridacna squamosa, indicate the involvement of the host VHA in the uptake of inorganic carbon and its supply to the symbiotic zooxanthellae. Gene 659:137–148

    CAS  PubMed  Google Scholar 

  • Jantzen C, Wild C, Mohammed E, Roa-Quiaoit HA, Haacke C, Richter C (2008) Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa. Red Sea Mar Biol 155:211–221

    Google Scholar 

  • Jensen FB (1995) Uptake and effects of nitrite and nitrate in animals. In: Walsh PJ, Wright P (eds) Nitrogen metabolism and excretion. CRC Press, Boca Raton, pp 289–303

    Google Scholar 

  • Koh CZY, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF, Neo ML, Ip YK (2018) Molecular characterization of a dual domain carbonic anhydrase from the ctenidium of the giant clam, Tridacna squamosa, and its expression levels after light exposure, cellular localization, and possible role in the uptake of exogenous inorganic carbon. Front Physiol 9:281. https://doi.org/10.3389/fphys.2018.00281

    Article  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Google Scholar 

  • Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lodder-Gadaczek J, Gieselmann V, Eckhardt M (2013) Vesicular uptake of N-acetylaspartylglutamate is catalysed by sialin (SLC17A5). Biochem J 454:31–38

    CAS  PubMed  Google Scholar 

  • Lucas JS (1994) The biology, exploitation, and mariculture of giant clams (Tridacnidae). Rev Fish Sci 2:181–223

    Google Scholar 

  • Lundberg JO (2012) Nitrate transport in salivary glands with implications for NO homeostasis. Proc Natl Acad Sci U S A 109:13144–13145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    CAS  PubMed  Google Scholar 

  • Morin P, Sagne C, Gasnier B (2004) Functional characterization of wild-type and mutant human sialin. EMBO J 23:4560–4570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norton JH, Jones GW (1992) The giant clam: an anatomical and histological atlas. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Norton JH, Shepherd MA, Long HM, Fitt WK (1992) The zooxanthellae tubular system in the giant clam. Biol Bull 183:503–506

    CAS  PubMed  Google Scholar 

  • Onate JA, Naguit MRA (1989) A preliminary study on the effect of increased nitrate concentration on the growth of giant clams Hippopus hippopus. In: Zaragoza EC, de Guzman DL, Gonzales EP (eds) Culture of giant clams (Bivalvia: Tridacnidae). Australian Centre for International Agricultural Research, Canberra, pp 57–61

    Google Scholar 

  • Padgett PE, Leonard RT (1996) Free amino acid levels and the regulation of nitrate uptake in maize cell suspension cultures. J Exp Bot 47:871–883. https://doi.org/10.1093/jxb/47.7.871

    Article  CAS  Google Scholar 

  • Pientrancosta N, Anne C, Prescher H, Ruivo R, Sagne C, Debacker C, Bertrand H, Brossmer R, Acher F, Gasnier B (2012) Successful prediction of binding pocker in SLC17 transporter Sialin. J Biol Chem 287:11489–11497

    Google Scholar 

  • Poo JST, Choo CYL, Hiong KC, Boo MV, Wong WP, Chew SF, Ip YK (2020) Phototrophic potential and form II ribulose-1,5-bisphosphate carboxylase/oxygenase expression in five organs of the fluted giant clam Tridacna squamosa. Coral Reefs. https://doi.org/10.1007/s00338-020-01898-7

    Article  Google Scholar 

  • Qin L, Liu X, Sun Q, Fan Z, Xia D, Ding G, Ong HL, Adams D, Gahl WA, Zheng C, Qi S, Jin L, Zhang C, Gu L, He J, Deng D, Ambudkar IS, Wang S (2012) Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc Natl Acad Sci U S A 109:13424–13439

    Google Scholar 

  • Qu XM, Wu ZF, Pang BX, Jin LY, Qin LZ, Wang SL (2016) From nitrate to nitric oxide: The role of salivary glands and oral bacteria. J Dent Res 95:1452–1456

    CAS  PubMed  Google Scholar 

  • Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr (2013) The major facilitator superfamily (MFS) revisited. FEBS J 279:2022–2035

    Google Scholar 

  • Reimer RJ (2013) SLC17: A functionally diverse family of organic anion transporters. Mol Aspects Med 34:350–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosic N, Yew ESL, Chan CKK, Lee HC, Kaniewska P, Edwards D, Dove S, Hoegh-Guldberg O (2015) Unfolding the secrets of coral–algal symbiosis. ISME J 9:844–856

    CAS  PubMed  Google Scholar 

  • Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, Arakaki N, Fujie M, Koyanagi R, Roy MC, Kawachi M, Hidaka M, Satoh N, Shinzato C (2018) Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19:458. https://doi.org/10.1186/s12864-018-4857-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summons RE, Boag TS, Osmond CB (1986) The effect of ammonium on photosynthesis and the pathway of ammonium assimilation in Gymnodinium microadriaticum in vitro and in symbiosis with tridacnid clams and corals. Proc R Soc Lond B Biol Sci 227:147–159

    CAS  Google Scholar 

  • Song B, Ward BB (2007) Molecular cloning and characterization of high-affinity nitrate transporters in marine phytoplankton. J Phycol 43:542–552

    CAS  Google Scholar 

  • Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takabayashi M, Santos SR, Cook CB (2004) Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 40:160–164

    CAS  Google Scholar 

  • Thurston RV, Russo RC, Vinogradov GA (1981) Ammonia toxicity to fishes. Effect of pH on the toxicity of the unionized ammonia species. Environ Sci Technol 15:837–840. https://doi.org/10.1021/es00089a012

    Article  CAS  Google Scholar 

  • Tomasso JR, Carmichael GJ (1986) Acute toxicity of ammonia, nitrite and nitrate to the Guadalupe bass, Micropterus treculi. Bull Environ Contam Toxicol 36:866–870

    CAS  PubMed  Google Scholar 

  • Toonen RJ, Nakayama T, Ogawa T, Rossiter A, Delbeek JC (2012) Growth of cultured giant clams (Tridacna spp.) in low pH, high-nutrient seawater: species-specific effects of substrate and supplemental feeding under acidification. J Mar Biol Assoc UK 92:731–740

    CAS  Google Scholar 

  • Traving C, Schauer R (1998) Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54:1330–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verheijen FW, Verbeek E, Aula N, Beerens CEMT, Havelaar AC, Joosse M, Peltonen L, Aula P, Galjaard H, van der Spek PJ, Mancini GMS (1999) A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nature Genet 23:462–465

    CAS  PubMed  Google Scholar 

  • Westin DT (1974) Nitrate and nitrite toxicity to salmonoid fishes. Prog Fish Cult 36:86–89

    CAS  Google Scholar 

  • Wilkerson FP, Trench RK (1986) Uptake of dissolved inorganic nitrogen by the symbiotic clam Tridacna gigas and the coral Acropora sp. Mar Biol 93:237–246

    CAS  Google Scholar 

  • Wreden CC, Wlizla M, Reimer RJ (2005) Varied mechanisms underlie the free sialic acid storage disorders. J Biol Chem 280:1408–1416

    CAS  PubMed  Google Scholar 

  • Yellowlees D, Rees TA, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Singapore Ministry of Education through a Grant (R-154–000-A37-114) to Y. K. Ip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuen K. Ip.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Mark R. Patterson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ip, Y.K., Hiong, K.C., Teng, J.H.Q. et al. The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3 cotransporter) in the ctenidium during light exposure. Coral Reefs 39, 451–465 (2020). https://doi.org/10.1007/s00338-020-01907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01907-9

Keywords

Navigation