Skip to main content
Log in

Review of Vehicle Detection Systems in Advanced Driver Assistant Systems

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Driverless cars and autonomous vehicles have significantly changed the face of transportation those days. Efficient use of vision system in the recent development of advanced driver assistance systems since last two decades have equipped cars and light vehicles to reduce accidents, congestion, crashes and pollution. The robust performance of the driver assistance systems absolutely depend on the flawless detection of the vehicles from the images. Developments of vigorous computer vision techniques based on various Image level features have enabled intelligent Transportation systems to solve some of the core challenges in vehicle detection. A detailed study of the vehicle detection in dynamic conditions is presented in this paper. The complexity of the vehicle detection in variable on-road driving conditions is evident from the diverse challenges illustrated in this paper. Dynamic vehicle detection mechanism has obviously attracted numerous approaches like feature based techniques and model based techniques. Different set of visual information representation as edge, shadow, light are used to detect the vehicles. Out of all low level features shape representation for vehicle detection is observed more efficient. The need of handling massive visual data for processing is addressed using novel feature representation like object proposal methods is discussed in more detail. The efficacy of ongoing research in Autonomous vehicles is validated using deep learning techniques on aerial image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu T, Zheng N, Zhao L, Cheng H, et al (2005) Learning based symmetric feature selection for vehicle detection. In: IEEE Proceedings. Intelligent Vehicles Symposium INSPEC Accession Number: 8642934

  2. Broggi A, Cerri P, Antonello PC (2004) Multi-resolution vehicle detection using artificial vision. IEEE Intelligent Vehicles Symposium, Parma, pp 310–314

    Google Scholar 

  3. Betke M et al (2002) Real-time multiple vehicle detection and tracking from a moving vehicle. Mach Vis Appl 12(2):69–83

    Google Scholar 

  4. Kalinke T, Tzomakas C, von Seelen W (1998) A texture-based object detection and an adaptive model-based classification. IEEE Int Conf Intell Veh Stuttg Ger 1:143–148

    Google Scholar 

  5. Betke M, Haritaoglu E, Davis LS (2000) Real-time multiple vehicle detection and tracking from a moving vehicle. Mach Vision Appl 12(2):69–83

    Google Scholar 

  6. Gupte S, Masoud O, Martin RFK, Papanikolopoulos NP (2002) Detection and classification of vehicles. IEEE Trans Intell Transp Syst 3(1):37–47

    Google Scholar 

  7. Bileschi SM, Leung B, Rifkin RM (2004) Towards component-based car detection. In: ECCV workshop on statistical learning and computer vision

  8. Arr´ospide J, Salgado L, Marinas J (2012) Hog-like gradient-based descriptor for visual vehicle detection. In: IEEE intelligent vehicles symposium, pp 223–228

  9. Zia MZ, Stark M, Schindler K (2015) Towards scene understanding with detailed 3d object representations. Int J Comput Vis 112(2):188–203

    MathSciNet  Google Scholar 

  10. Huang C-L, Liao W-C (2004) A vision-based vehicle identification system. In: International conference on pattern recognition

  11. Jazayeri A, Cai H, Zheng JY, Tuceryan M (2011) Vehicle detection and tracking in car video based on motion model. IEEE Trans Intell Transp Syst 12(2):583–595

    Google Scholar 

  12. Caraffi C, Vojir T, Trefny J, Sochman J, Matas J (2012) A system for real-time detection and tracking of vehicles from a single car-mounted camera. In: IEEE international conference on intelligent transportation systems, pp 975–982

  13. Felzenszwalb P, McAllester D, Ramanan D (2008) The simplified histogram of gradients (HOG). A discriminatively trained, multiscale, deformable part model. In: IEEE conference on computer vision and pattern recognition

  14. Bensrhair A et al. (2002) Detection of vehicles in 3 D using stereo vision was the pioneering contribution

  15. Leitloff J, Hinz S, Stilla U (2010) Vehicle detection in very high resolution satellite images of city areas. IEEE Trans Geosci Remote Sens 48(7):2795–2806

    Google Scholar 

  16. Hinz S, Stilla U (2006) Car detection in aerial thermal images by local and global evidence accumulation. Pattern Recognit Lett 27(4):308–315

    Google Scholar 

  17. Yao W, Hinz S, Stilla U (2011) Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis. ISPRS J Photogramm Remote Sens 66(3):260–271

    Google Scholar 

  18. Maksymiuk O, Brenner A, Stilla U (2013) Detection of stationary vehicles in airborne decimeter resolution SAR intensity images using morphological attribute filters. In: Proceedings of wissenschaftlich-technische jahrestagung der DGPF, vol 33, pp 391–400

  19. Toth C, Barsi A, Lovas T (2003) Vehicle recognition from lidar data. Int Arch Photogramm Remote Sens Spatial Inf Sci 3(W13):163–166

    Google Scholar 

  20. Börcs A, Benedek C (2012) A marked point process model for vehicle detection in aerial lidar point clouds. In: ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, vol I-3, pp 93–98

    Google Scholar 

  21. Keat CTM, Pradalier C, Laugier C (2005) Vehicle detection and car park mapping using laser scanner. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2054–2060

  22. Golovinskiy A, Kim VG, Funkhouser T (2009) Shape-based recognition of 3D point clouds in urban environments. In: International conference on computer vision, IEEE, pp 2154–2161

  23. Velizhev A, Shapovalov R, Schindler K (2012) Implicit shape models for object detection in 3d point clouds. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:179–184

    Google Scholar 

  24. Serna A, Marcotegui B (2014) Detection, segmentation and classification of 3d urban objects using mathematical morphology and supervised learning. ISPRS J Photogramm Remote Sens 93:243–255

    Google Scholar 

  25. Sun Z et al (2002) On-road vehicle detection using Gabor filters and support vector machines. In: International Conference on Digital Signal Processing Proceedings. INSPEC Accession Number: 7516160

  26. Gepperth A et al (2005) Real-time detection and classification of cars in video sequences. In: IEEE Proceedings. Intelligent Vehicles Symposium INSPEC Accession Number: 8643018

  27. Negri P et al (2007) Benchmarking haar and histograms of oriented gradients features applied to vehicle detection. In: Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation

  28. Manjunath BS et al (2001) Color and Texture Descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715

    Google Scholar 

  29. Zhang Y et al (2006) Legendre and gabor moments for vehicle recognition in forward collision warning IEEE Intelligent Transportation Systems Conference INSPEC Accession Number: 9231823

  30. Ponsa D et al (2011) On-board image-based vehicle detection and tracking. Trans Inst Meas Control 33(7):783–805

    MathSciNet  Google Scholar 

  31. Himmelsbach M, Müller A, Lüttel T, Wünsche H-J (2008) Lidar-based 3D object perception. In: Proceedings of 1st international workshop on cognition for technical systems

  32. Cristiano P et al (2007) A lidar and vision-based approach for pedestrian and vehicle detection and tracking. In: IEEE Intelligent Transportation Systems Conference INSPEC Accession Number: 9798150

  33. Premebida C, Nunes U (2006) A multi-target tracking and GMM classifier for intelligent vehicles. In: 9th International IEEE conference on intelligent transportation systems, Toronto, Canada

  34. Bartsch A et al (2012) Pedestrian recognition using automotive radar sensors Adv. Radio Sci. 10:45–55

    Google Scholar 

  35. Tang T et al (2017) Fast vehicle detection in UAV images. In: International Workshop on Remote Sensing with Intelligent Processing (RSIP) INSPEC Accession Number: 16981065

  36. Liu K et al (2015) Fast multiclass vehicle detection on aerial images. IEEE Geosci Remote Sens Lett 12(9):1938–1942

    Google Scholar 

  37. Liu S et al (2015) Target detection in complex scene of SAR image based on existence probability. EURASIP J. Adv. Signal Process 2016:114

    Google Scholar 

  38. Souyris JC, Henry C, Adragna F (2003) On the use of complex SAR image spectral analysis for target detection: Assessment of polarimetry. IEEE Trans Geosci Remote Sens 41(12):2725–2734

    Google Scholar 

  39. Felipe J et al (2016) Advanced Driver Assistance System for Road Environments to Improve Safety and Efficiency. Trans Res Procedia 14:2245–2254

    Google Scholar 

  40. Lu M, Wevers K, Van Der Heijden R (2005) Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety. Trans Plan Technol 28(3):167–187

    Google Scholar 

  41. Piao J, McDonald M (2008) Advanced driver assistance systems from autonomous to cooperative approach. Transp Rev 28(5):659–684

    Google Scholar 

  42. Hilario C, Collado J, Armingol J, de la Escalera A (2005) Pyramidal image analysis for vehicle detection. IEEE Intelligent Vehicles Symposium, Las Vegas, pp 88–93

    Google Scholar 

  43. Jung HG, Cho YH, Yoon PJ, Kim J (2008) Scanning laser radarbased target position designation for parking aid system. IEEE Trans Intell Transp Syst 9:406–424

    Google Scholar 

  44. Jung HG, Kim DS, Yoon PJ, Kim J (2006) Parking slot markings recognition for automatic parking assist system. In: IEEE intelligent vehicle symposium

  45. Jung HG, Kim DS, Kim J (2010) Light-stripe-projection-based target position designation for intelligent parking-assist system. IEEE Trans Intell Transp Syst 11:942–953

    Google Scholar 

  46. Suhr JK, Jung HG, Bae K, Kim J (2010) Automatic free parking space detection by using motion stereobased 3d reconstruction. Mach Vision Appl 21(2):163–176

    Google Scholar 

  47. Sun Z, Bebis G, Miller R (2006) On-road vehicle detection: A review. IEEE Trans Pattern Anal Mach Intell 28:694–711

    Google Scholar 

  48. Sotelo MA, Barriga J, Fernández D, Parra I, Naranjo JE, Marrón M, Alvarez S, Gavilán M (2007) Vision-based blind spot detection using optical flow. EUROCAST 2007 LNCS 4739:1113–1118

    Google Scholar 

  49. Balcones D, Llorca DF, Sotelo MA, Gavilán M, Alvarez S, Parra I, Ocana M (2009) Real-time vision-based vehicle detection for rear-end collision mitigation systems. EUROCAST 2009 LNCS 5717:235–320

    Google Scholar 

  50. Llorca DF et al Vision-based parking assistance system for leaving perpendicular and angle parking lots

  51. Houben S (2011) A single target voting scheme for traffic sign detection. In: Proceedings IEEE IV symposium, pp 124–129

  52. Timofte R, Zimmermann K, Van Gool L (2009) Multi-view traffic sign detection, recognition, and 3D localisation. In: Proceedings of WACV, pp 1–8

  53. Wang W A learning-based approach for lane departure warning systems with a personalized driver model

  54. Ruta A, Porikli F, Watanabe S, Li Y (2011) In-vehicle camera traffic sign detection and recognition. Mach Vis Appl 22:359–375. https://doi.org/10.1007/s00138-009-0231-x

    Article  Google Scholar 

  55. Ruta A, Li Y, Liu X (2010) Real-time traffic sign recognition from video byclass-specificdiscriminativefeatures. Pattern Recognit 43(1):416–430

    MATH  Google Scholar 

  56. Loy G, Barnes N (2004) Fast shape-based road sign detection for a driver assistance system. Proc IEEE/RSJ Int Conf IROS 1:70–75

    Google Scholar 

  57. Kuo W-J, Lin C-C (2007) Two-stage road sign detection and recognition. In: Proceedings IEEE international conference multimedia and Expo, pp 1427–1430

  58. Ren F, Huang J, Jiang R, Klette R (2009) General traffic sign recognition by feature matching. In: Proceedings 24th international conference IVCNZ, pp 409–414

  59. Chiang H-H, Chen Y-L, Wang W-Q, Lee T-T (2010) Road speed sign recognition using edge-voting principle and learning vector quantization network. In: Proceedings of the ICS, pp 246–251

  60. Qingsong X, Juan S, Tiantian L (2010) A detection and recognition method for prohibition traffic signs. In: Proceedings of international conference IASP, pp 583–586

  61. Liu H, Liu D, Xin J (2002) Real-time recognition of road traffic sign in motion image based on genetic algorithm. Proc Int Conf Mach Learn Cybern 1:83–86

    Google Scholar 

  62. Deguchi D, Shirasuna M, Doman K, Ide I, Murase H (2011) Intelligent traffic sign detector: adaptive learning based on online gathering of training samples. In: Proceedings IEEE IV symposium, pp 72–77

  63. Barnes N, Zelinsky A, Fletcher L (2008) Real-time speed sign detection using the radial symmetry detector. IEEE Trans Intell Transp Syst 9(2):322–332

    Google Scholar 

  64. Nunn C, Kummert A, Muller-Schneiders S (2008) A two stage detection module for traffic signs. In: Proceedings of IEEE ICVES, pp 248–252

  65. Meuter M, Nunn C, Gormer SM, Muller-Schneiders S, Kummert A (2011) A decision fusion and reasoning module for a traffic sign recognition system. IEEE Trans Intell Transp Syst 12(4):1126–1134

    Google Scholar 

  66. Garcia-Garrido MA, Ocana M, Llorca DF, Sotelo MA, Arroyo E, Llamazares A (2011) Robust traffic signs detection by means of vision and V2I communications. In: Proceedings of the 14th international IEEE ITSC, pp 1003–1008

  67. Gonzalez A, Garrido M, Llorca D, Gavilan M, Fernandez J, Alcantarilla P, Parra I, Herranz F, Bergasa L, Sotelo M, RevengadeToro P (2011) Automatic traffic signsand panelsinspection system using computer vision. IEEE Trans Intell Transp Syst 12(2):485–499

    Google Scholar 

  68. Moutarde F, Bargeton A, Herbin A, Chanussot L (2007) Robust onvehicle real-time visual detection of American and European speed limit signs, with a modular traffic signs recognition system. In: Proceedings of the IEEE intelligent vehicles symposium, pp 1122–1126

  69. Belaroussi R, Tarel J-P (2009) Angle vertex and bisector geometric model for triangular road sign detection. In: Proceedings of WACV, pp 1–7

  70. Hoferlin B, Zimmermann K (2009) Towards reliable traffic sign recognition. In: Proceedings of the IEEE intelligent vehicles symposium, pp 324–329

  71. Ruta A, Li Y, Liu X (2007) Towards real-time traffic sign recognition by class-specific discriminative features. Proc 18th Br Mach Vis Conf 1:399–408

    Google Scholar 

  72. Prisacariu V, Timofte R, Zimmermann K, Reid I, Van Gool L (2010) Integrating object detection with 3D tracking towards a better driver assistance system. In: Proceedings of the 20th ICPR, pp 3344–3347

  73. Gao X, Podladchikova L, Shaposhnikov D, Hong K, Shevtsova N (2006) Recognition of traffic signs based on their colour and shape features extractedusinghumanvisionmodels. J Vis Commun Image Represent 17(4):675–685

    Google Scholar 

  74. Xie Y, Liu L-F, Li C-H, Qu Y-Y (2009) Unifying visual saliency with HOG feature learning for traffic sign detection. In: Proceedings of the IEEE intelligent vehicles symposium, pp 24–29

  75. Overett G, Petersson L (2011) Large scale sign detection using HOG feature variants. In: Proceedings of IEEE IV symposium, pp 326–331

  76. Alefs B, Eschemann G, Ramoser H, Beleznai C (2007) Road sign detection from edge orientation histograms. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp 993–998

  77. Pettersson N, Petersson L, Andersson L (2008) Thehistogramfeature—A resource-efficient weak classifier. In: Proceedings of the IEEE intelligent vehicles symposium, pp 678–683

  78. Creusen I, Wijnhoven R, Herbschleb E, de With P (2010) Color exploitation in hog-based traffic sign detection. In: Proceedings of the 17th IEEE ICIP, pp 2669–2672

  79. Stallkamp J, Schlipsing M, Salmen J, Igel C (2011) The German Traffic Sign Recognition Benchmark: A multi-class classification competition. In: Proceedings of  International Joint Conference on Neural Networks, pp 1453–1460, INSPEC Accession Number: 12287227

  80. Stallkamp J, Schlipsing M, Salmen J, Igel C (2012) Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw 32:323–332

    Google Scholar 

  81. Timofte R, Zimmermann K, Van Gool L (2014) Multi-view traffic sign detection, recognition, and 3D localisation. Mach Vis Appl 25(3):633–647

    Google Scholar 

  82. Larsson F, Felsberg M (2011) Using Fourier descriptors and spatial models for traffic sign recognition. In: Proceedings of image analysis, pp 238–249

    Google Scholar 

  83. Grigorescu C, Petkov N (2003) Distance sets for shape filters and shape recognition. IEEE Trans Image Process 12(10):1274–1286

    MathSciNet  MATH  Google Scholar 

  84. Belaroussi R, Foucher P, Tarel J, Soheilian B, Charbonnier P, Paparoditis N (2010) Road sign detection in images: a case study. In: Proceedings of ICPR, Istanbul, Turkey, pp 484–488

  85. Hosang J, Benenson R, Dollár P, Schiele B (2016) What makes for effective detection proposals? IEEE Trans Pattern Anal Mach Intell 38(4):814–830

    Google Scholar 

  86. Uijlings JR, van de Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171

    Google Scholar 

  87. Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectnessof image windows. IEEE Trans Pattern Anal Mach Intell 34(11):2189–2202

    Google Scholar 

  88. Rahtu E, Kannala J, Blaschko M (2011) Learning a categoryindependent object detection cascade. In: 2011 International conference on computer vision, IEEE pp 1052–1059

  89. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Google Scholar 

  90. Zitnick CL, Dollár P (2014) Edge boxes: Locating object proposals from edges. In: European conference on computer vision, Springer, pp 391–405

  91. Krähenbühl P, Koltun V (2014) Geodesic object proposals. In: European conference on computer vision, Springer, pp 725–739

  92. Razakarivony S, Jurie F (2016) Vehicle detection in aerial imagery: a small target detection benchmark. J Vis Commun Image Represent 34:187–203

    Google Scholar 

  93. Cheng G, Han J (2016) A survey on object detection in optical remote sensing images. ISPRS J Photogramm Remote Sens 117:11–28

    Google Scholar 

  94. Sommer L, Schuchert T, Beyerer J (2017) Fast deep vehicle detection in aerial images In: IEEE winter conference on applications of computer vision (WACV), pp 311–319

  95. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. IJCV 59:167–181

    Google Scholar 

  96. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Google Scholar 

  97. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  98. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  99. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations, pp 1–14

  100. Simard P, Steinkraus D, Platt J (2003) Best practices for convolutional neural networks applied to visual document analysis. In: 7th IEEE international conference on document analysis and recognition (ICDAR), pp 958–963

  101. Tewari T, Sakhare KV, Vyas V (2018) Vehicle Detection in aerial images using Selective Search with a simple deep learning based combination classifier. In: 3rd International conference on microelectronics computing and communication systems (MCCS-2018)

  102. Liu K, Mattyus G (2015) Fast Multiclass Vehicle Detection on Aerial Images. IEEE Geosci Remote Sens Lett IEEE 12(9):1–5

    Google Scholar 

  103. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99

  104. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448

  105. Lusted LB (1971) Signal detectability and medical decision-making. Science 171(3977):1217–1219

    Google Scholar 

  106. Viola P, Jones MJ (2004) Robust real time face detection. Int J Comput Vis 57(2):137–154

    Google Scholar 

  107. Rowley HA, Baluja S, Kanade T (1998) Neural network-based face detectionin. IEEE Trans Pattern Anal Mach Intell 20:23–38

    Google Scholar 

  108. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE conference on computer vision and pattern recognition, pp 886–893

  109. Tuzel O, Porikli F, Meer P (2006) Region covariance: a fast descriptor fordetection and classification. In: European conference on computer vision, pp 589–600

    Google Scholar 

  110. Bollmann P, Raghavan V, Jung GS (1989) A critical investigation of recall and precision as measures of retrieval system performance. ACM Trans Inf Syst 7(3):205–229

    Google Scholar 

  111. Gu C, Arbelez PA, Lin Y, Yu K, Malik J (2012) Multi-component models for object detection. In: European conference on computer vision, pp 445–458

    Google Scholar 

  112. van de Sande KEA, Uijlings JRR, Gevers T, Smeulders AWM (2011) Segmentation as selective search for object recognition. In: International conference on computer vision, pp 1879–1886

  113. Pedersoli M, Vedaldi A, Gonzlez J (2011) A coarse-to-_ne approach for fast deformable object detection. In: IEEE conference on computer vision and pattern recognition, pp 1353–1360

  114. Felzenszwalb PF, Girshick RB, McAllester DA (2010) Cascade object detection with deformable part models. In: IEEE conference on computer vision and pattern recognition, pp 2241–2248

  115. Dollár P, Wojek C, Schiele B, Perona P (2009) Pedestrian detection: a benchmark. In: IEEE conference on computer vision and pattern recognition, pp 304–311

  116. Carbonetto P, Dorkó G, Schmid C, Kück H, De Freitas N (2008) Learning to recognize objects with little supervision. Int J Comput Vis 77:219–237

    Google Scholar 

  117. Gleason J, Nefian AV, Bouyssounousse X, Fong T, Bebis G (2011) Vehicle detection from aerial imagery. In: IEEE international conference on robotics and automation, pp 2065–2070

  118. Stilla U, Michaelsen E, Soergel U, Hinz S, Ender H (2004) Airborne monitoringof vehicle activity in urban areas. Int Arch Photogramm Remote Sens 35:973–979

    Google Scholar 

  119. Tanner F, Colder B, Pullen C, Heagy D, Eppolito M, Carlan V, Oertel C, Sallee P (2009) Overhead imagery research data set: an an notated data library and tools to aid in the development of computer vision algorithms. In: Proceedings of IEEE applied imagery pattern recognition workshop, pp 1–8

  120. Betke M, Haritaoglu E, Davis LS (2000) Real-time multiple vehicle detection and tracking from a moving vehicle. Mach Vis Appl 12(2):69–83

    Google Scholar 

  121. Hubel D, Wiesel T (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh V. Sakhare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhare, K.V., Tewari, T. & Vyas, V. Review of Vehicle Detection Systems in Advanced Driver Assistant Systems. Arch Computat Methods Eng 27, 591–610 (2020). https://doi.org/10.1007/s11831-019-09321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09321-3

Navigation