Skip to main content

Advertisement

Log in

CXCL-10: a new candidate for melanoma therapy?

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking.

Conclusions

Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Y. Le, Y. Zhou, P. Iribarren, J. Wang, Chemokines and chemokine receptors: Their manifold roles in homeostasis and disease. Cell Mol Immunol 1, 95–104 (2004)

    CAS  PubMed  Google Scholar 

  2. A.J. Zweemer, J. Toraskar, L.H. Heitman, I.J. AP, Bias in chemokine receptor signalling. Trends Immunol 35, 243–252 (2014). https://doi.org/10.1016/j.it.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  3. H. Nomiyama, N. Osada, O. Yoshie, Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Genes Cells 18, 1–16 (2013). https://doi.org/10.1111/gtc.12013

    Article  CAS  PubMed  Google Scholar 

  4. A.D. Luster, J.V. Ravetch, Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 166, 1084–1097 (1987). https://doi.org/10.1084/jem.166.4.1084

    Article  CAS  PubMed  Google Scholar 

  5. J.R. Groom, A.D. Luster, CXCR3 ligands: Redundant, collaborative and antagonistic functions. Immunol Cell Biol 89, 207–215 (2011). https://doi.org/10.1038/icb.2010.158

    Article  CAS  PubMed  Google Scholar 

  6. K.D. Dyer, C.M. Percopo, E.R. Fischer, S.J. Gabryszewski, H.F. Rosenberg, Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood 114, 2649–2656 (2009). https://doi.org/10.1182/blood-2009-01-199497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B.K. Lo, M. Yu, D. Zloty, B. Cowan, J. Shapiro, K.J. McElwee, CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas. Am J Pathol 176, 2435–2446 (2010). https://doi.org/10.2353/ajpath.2010.081059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Altara, M. Manca, R.D. Brandao, A. Zeidan, G.W. Booz, F.A. Zouein, Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clin Science 130, 463–478 (2016). https://doi.org/10.1042/cs20150666

    Article  CAS  Google Scholar 

  9. M. Liu, S. Guo, J.K. Stiles, The emerging role of CXCL10 in cancer. Oncol Lett 2, 583–589 (2011). https://doi.org/10.3892/ol.2011.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M.A. Garcia-Lopez, F. Sanchez-Madrid, J.M. Rodriguez-Frade, M. Mellado, A. Acevedo, M.I. Garcia, J.P. Albar, C. Martinez, M. Marazuela, CXCR3 chemokine receptor distribution in normal and inflamed tissues: Expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab Investig 81, 409–418 (2001). https://doi.org/10.1038/labinvest.3780248

    Article  CAS  PubMed  Google Scholar 

  11. R. Tokunaga, W. Zhang, M. Naseem, A. Puccini, M.D. Berger, S. Soni, M. McSkane, H. Baba, H.J. Lenz, CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - a target for novel cancer therapy. Cancer Treat Rev 63, 40–47 (2018). https://doi.org/10.1016/j.ctrv.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  12. H. Nomiyama, N. Osada, O. Yoshie, The evolution of mammalian chemokine genes. Cytokine Gowth Fact Rev 21, 253–262 (2010). https://doi.org/10.1016/j.cytogfr.2010.03.004

    Article  CAS  Google Scholar 

  13. A.L. Angiolillo, C. Sgadari, D.D. Taub, F. Liao, J.M. Farber, S. Maheshwari, H.K. Kleinman, G.H. Reaman, G. Tosato, Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182, 155–162 (1995). https://doi.org/10.1084/jem.182.1.155

    Article  CAS  PubMed  Google Scholar 

  14. L. Persano, M. Crescenzi, S. Indraccolo, Anti-angiogenic gene therapy of cancer: Current status and future prospects. Mol Asp Med 28, 87–114 (2007). https://doi.org/10.1016/j.mam.2006.12.005

    Article  CAS  Google Scholar 

  15. F. Antonicelli, J. Lorin, S. Kurdykowski, S.C. Gangloff, R. Le Naour, J.M. Sallenave, W. Hornebeck, F. Grange, P. Bernard, CXCL10 reduces melanoma proliferation and invasiveness in vitro and in vivo. Brit J Dermatol 164, 720–728 (2011). https://doi.org/10.1111/j.1365-2133.2010.10176.x

    Article  CAS  Google Scholar 

  16. G. Li, L. Tian, J.M. Hou, Z.Y. Ding, Q.M. He, P. Feng, Y.J. Wen, F. Xiao, B. Yao, R. Zhang, F. Peng, Y. Jiang, F. Luo, X. Zhao, L. Zhang, Q. Zhou, Y.Q. Wei, Improved therapeutic effectiveness by combining recombinant CXC chemokine ligand 10 with Cisplatin in solid tumors. Clin Cancer Res 11, 4217–4224 (2005). https://doi.org/10.1158/1078-0432.ccr-04-2117

    Article  CAS  PubMed  Google Scholar 

  17. M.L. Nagpal, J. Davis, T. Lin, Overexpression of CXCL10 in human prostate LNCaP cells activates its receptor (CXCR3) expression and inhibits cell proliferation. Biochim Biophys Acta 1762, 811–818 (2006). https://doi.org/10.1016/j.bbadis.2006.06.017

    Article  CAS  PubMed  Google Scholar 

  18. H. Verbeke, K. Geboes, J. Van Damme, S. Struyf, The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta 1825, 117–129 (2012). https://doi.org/10.1016/j.bbcan.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  19. M. Zhao, Q. Ma, J. Xu, S. Fu, L. Chen, B. Wang, J. Wu, L. Yang, Combining CXCL10 gene therapy and radiotherapy improved therapeutic efficacy in cervical cancer HeLa cell xenograft tumor models. Oncol Lett 10, 768–772 (2015). https://doi.org/10.3892/ol.2015.3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Enderlin, E.V. Kleinmann, S. Struyf, C. Buracchi, A. Vecchi, R. Kinscherf, F. Kiessling, S. Paschek, S. Sozzani, J. Rommelaere, J.J. Cornelis, J. Van Damme, C. Dinsart, TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 16, 149–160 (2009). https://doi.org/10.1038/cgt.2008.62

    Article  CAS  PubMed  Google Scholar 

  21. J.R. Schoenborn, C.B. Wilson, Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96, 41–101 (2007). https://doi.org/10.1016/s0065-2776(07)96002-2

    Article  CAS  PubMed  Google Scholar 

  22. A.V. Gorbachev, H. Kobayashi, D. Kudo, C.S. Tannenbaum, J.H. Finke, S. Shu, J.M. Farber, R.L. Fairchild, CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. J Immunol 178, 2278–2286 (2007). https://doi.org/10.4049/jimmunol.178.4.2278

    Article  CAS  PubMed  Google Scholar 

  23. C. Qian, H. An, Y. Yu, S. Liu, X. Cao, TLR agonists induce regulatory dendritic cells to recruit Th1 cells via preferential IP-10 secretion and inhibit Th1 proliferation. Blood 109, 3308–3315 (2007). https://doi.org/10.1182/blood-2006-08-040337

    Article  CAS  PubMed  Google Scholar 

  24. Y. Ohmori, L. Wyner, S. Narumi, D. Armstrong, M. Stoler, T.A. Hamilton, Tumor necrosis factor-alpha induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. Am J Pathol 142, 861–870 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. J.B. Xia, G.H. Liu, Z.Y. Chen, C.Z. Mao, D.C. Zhou, H.Y. Wu, K.S. Park, H. Zhao, S.K. Kim, D.Q. Cai, X.F. Qi, Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation. Cytokine 81, 63–70 (2016). https://doi.org/10.1016/j.cyto.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  26. R.A. Colvin, G.S. Campanella, J. Sun, A.D. Luster, Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 279, 30219–30227 (2004). https://doi.org/10.1074/jbc.M403595200

    Article  CAS  PubMed  Google Scholar 

  27. S.C. Wightman, A. Uppal, S.P. Pitroda, S. Ganai, B. Burnette, M. Stack, G. Oshima, S. Khan, X. Huang, M.C. Posner, R.R. Weichselbaum, N.N. Khodarev, Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Brit J Cancer 113, 327–335 (2015). https://doi.org/10.1038/bjc.2015.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Moriai, M. Takahara, T. Ogino, T. Nagato, K. Kishibe, H. Ishii, A. Katayama, N. Shimizu, Y. Harabuchi, Production of interferon-{gamma}-inducible protein-10 and its role as an autocrine invasion factor in nasal natural killer/T-cell lymphoma cells. Clin Cancer Res 15, 6771–6779 (2009). https://doi.org/10.1158/1078-0432.ccr-09-1052

    Article  CAS  PubMed  Google Scholar 

  29. J. Vinet, E.K. de Jong, H.W. Boddeke, V. Stanulovic, N. Brouwer, I. Granic, U.L. Eisel, R.S. Liem, K. Biber, Expression of CXCL10 in cultured cortical neurons. J Neurochem 112, 703–714 (2010). https://doi.org/10.1111/j.1471-4159.2009.06495.x

    Article  CAS  PubMed  Google Scholar 

  30. T. Ren, L. Zhu, M. Cheng, XCL10 accelerates EMT and metastasis by MMP-2 in hepatocellular carcinoma. Am J Transl Res 9, 2824–2837 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Pellegrino, F. Antonaci, F. Russo, F. Merchionne, D. Ribatti, A. Vacca, F. Dammacco, CXCR3-binding chemokines in multiple myeloma. Cancer Lett 207, 221–227 (2004). https://doi.org/10.1016/j.canlet.2003.10.036

    Article  CAS  PubMed  Google Scholar 

  32. M. Furuya, T. Suyama, H. Usui, Y. Kasuya, M. Nishiyama, N. Tanaka, I. Ishiwata, Y. Nagai, M. Shozu, S. Kimura, Up-regulation of CXC chemokines and their receptors: Implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol 38, 1676–1687 (2007). https://doi.org/10.1016/j.humpath.2007.03.023

    Article  CAS  PubMed  Google Scholar 

  33. M. Duruisseaux, N. Rabbe, M. Antoine, T. Vieira, V. Poulot, J. Cadranel, M. Wislez, Pro-tumoural CXCL10/CXCR3-a autocrine loop in invasive mucinous lung adenocarcinoma. ERJ Open Res 3, 00047–02016 (2017). https://doi.org/10.1183/23120541.00047-2016

    Article  PubMed  PubMed Central  Google Scholar 

  34. D. Datta, J.A. Flaxenburg, S. Laxmanan, C. Geehan, M. Grimm, A.M. Waaga-Gasser, D.M. Briscoe, S. Pal, Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells: Relevance for the development of human breast cancer. Cancer Res 66, 9509–9518 (2006). https://doi.org/10.1158/0008-5472.can-05-4345

    Article  CAS  PubMed  Google Scholar 

  35. A.A. Ejaeidi, B.S. Craft, L.V. Puneky, R.E. Lewis, J.M. Cruse, Hormone receptor-independent CXCL10 production is associated with the regulation of cellular factors linked to breast cancer progression and metastasis. Exp Mol Pathol 99, 163–172 (2015). https://doi.org/10.1016/j.yexmp.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  36. A. Antonelli, S.M. Ferrari, P. Fallahi, S. Frascerra, S. Piaggi, S. Gelmini, C. Lupi, M. Minuto, P. Berti, S. Benvenga, F. Basolo, C. Orlando, P. Miccoli, Dysregulation of secretion of CXC alpha-chemokine CXCL10 in papillary thyroid cancer: Modulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrine Related Cancer 16, 1299–1311 (2009). https://doi.org/10.1677/erc-08-0337

    Article  CAS  PubMed  Google Scholar 

  37. R.J. Flores, A.J. Kelly, Y. Li, M. Nakka, D.A. Barkauskas, M. Krailo, L.L. Wang, L. Perlaky, C.C. Lau, M.J. Hicks, T.K. Man, A novel prognostic model for osteosarcoma using circulating CXCL10 and FLT3LG. Cancer 123, 144–154 (2017). https://doi.org/10.1002/cncr.30272

    Article  CAS  PubMed  Google Scholar 

  38. S. Lunardi, N.B. Jamieson, S.Y. Lim, K.L. Griffiths, M. Carvalho-Gaspar, O. Al-Assar, S. Yameen, R.C. Carter, C.J. McKay, G. Spoletini, S. D'Ugo, M.A. Silva, O.J. Sansom, K.P. Janssen, R.J. Muschel, T.B. Brunner, IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 5, 11064–11080 (2014). https://doi.org/10.18632/oncotarget.2519

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Yamaguchi, V.J. Hearing, Melanocytes and their diseases (Cold Spring Harb. Perspect, Med, 2014). https://doi.org/10.1101/cshperspect.a017046

    Book  Google Scholar 

  40. H. Mirzaei, H. Salehi, R.K. Oskuee, A. Mohammadpour, H.R. Mirzaei, M.R. Sharifi, R. Salarinia, H.Y. Darani, M. Mokhtari, A. Masoudifar, A. Sahebkar, R. Salehi, M.R. Jaafari, The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett 419, 30–39 (2018). https://doi.org/10.1016/j.canlet.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  41. H. Mirzaei, A. Sahebkar, A. Avan, M.R. Jaafari, R. Salehi, H. Salehi, H. Baharvand, A. Rezaei, J. Hadjati, J.M. Pawelek, H.R. Mirzaei, Application of Mesenchymal stem cells in melanoma: A potential therapeutic strategy for delivery of targeted agents. Curr Med Chem 23, 455–463 (2016). https://doi.org/10.2174/0929867323666151217122033

    Article  CAS  PubMed  Google Scholar 

  42. D. Schadendorf, D.E. Fisher, C. Garbe, J.E. Gershenwald, J.J. Grob, A. Halpern, M. Herlyn, M.A. Marchetti, G. McArthur, A. Ribas, A. Roesch, A. Hauschild, Melanoma Nature Rev 1, 15003 (2015). https://doi.org/10.1038/nrdp.2015.3

    Article  Google Scholar 

  43. A.E. Chang, L.H. Karnell, H.R. Menck, The National Cancer Data Base report on cutaneous and noncutaneous melanoma: A summary of 84,836 cases from the past decade. Cancer 83, 1664–1678 (1998). https://doi.org/10.1002/(sici)1097-0142(19981015)83:8<1664::aid-cncr23>3.0.co;2-g

    Article  CAS  PubMed  Google Scholar 

  44. B.A. Kohler, E. Ward, B.J. McCarthy, M.J. Schymura, L.A. Ries, C. Eheman, A. Jemal, R.N. Anderson, U.A. Ajani, B.K. Edwards, Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103, 714–736 (2011). https://doi.org/10.1093/jnci/djr077

    Article  PubMed  PubMed Central  Google Scholar 

  45. B. Domingues, J.M. Lopes, P. Soares, H. Populo, Melanoma treatment in review. ImmunoTargets Ther 7, 35–49 (2018). https://doi.org/10.2147/itt.s134842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M.S. Lawrence, P. Stojanov, P. Polak, G.V. Kryukov, K. Cibulskis, A. Sivachenko, S.L. Carter, C. Stewart, C.H. Mermel, S.A. Roberts, A. Kiezun, P.S. Hammerman, A. McKenna, Y. Drier, L. Zou, A.H. Ramos, T.J. Pugh, N. Stransky, E. Helman, J. Kim, C. Sougnez, L. Ambrogio, E. Nickerson, E. Shefler, M.L. Cortes, D. Auclair, G. Saksena, D. Voet, M. Noble, D. DiCara, P. Lin, L. Lichtenstein, D.I. Heiman, T. Fennell, M. Imielinski, B. Hernandez, E. Hodis, S. Baca, A.M. Dulak, J. Lohr, D.A. Landau, C.J. Wu, J. Melendez-Zajgla, A. Hidalgo-Miranda, A. Koren, S.A. McCarroll, J. Mora, B. Crompton, R. Onofrio, M. Parkin, W. Winckler, K. Ardlie, S.B. Gabriel, C.W.M. Roberts, J.A. Biegel, K. Stegmaier, A.J. Bass, L.A. Garraway, M. Meyerson, T.R. Golub, D.A. Gordenin, S. Sunyaev, E.S. Lander, G. Getz, Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013). https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  48. R. De Angelis, M. Sant, M.P. Coleman, S. Francisci, P. Baili, D. Pierannunzio, A. Trama, O. Visser, H. Brenner, E. Ardanaz, M. Bielska-Lasota, G. Engholm, A. Nennecke, S. Siesling, F. Berrino, R. Capocaccia, Cancer survival in Europe 1999-2007 by country and age: Results of EUROCARE--5-a population-based study. Lancet Oncol 15, 23–34 (2014). https://doi.org/10.1016/s1470-2045(13)70546-1

    Article  PubMed  Google Scholar 

  49. M. Tamaru, K. Tomura, S. Sakamoto, K. Tezuka, T. Tamatani, S. Narumi, Interleukin-1beta induces tissue- and cell type-specific expression of adhesion molecules in vivo. Arterioscler Thromb Vasc Biol 18, 1292–1303 (1998). https://doi.org/10.1161/01.atv.18.8.1292

    Article  CAS  PubMed  Google Scholar 

  50. M.F. Hsieh, S.L. Lai, J.P. Chen, J.M. Sung, Y.L. Lin, B.A. Wu-Hsieh, C. Gerard, A. Luster, F. Liao, Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. J Immunol 177, 1855–1863 (2006). https://doi.org/10.4049/jimmunol.177.3.1855

    Article  CAS  PubMed  Google Scholar 

  51. S.G. Kelsen, M.O. Aksoy, Y. Yang, S. Shahabuddin, J. Litvin, F. Safadi, T.J. Rogers, The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. American journal of physiology Lung Cell Mol Physiol 287, L584–L591 (2004). https://doi.org/10.1152/ajplung.00453.2003

    Article  CAS  Google Scholar 

  52. A.D. Luster, J.C. Unkeless, J.V. Ravetch, Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315, 672–676 (1985). https://doi.org/10.1038/315672a0

    Article  CAS  PubMed  Google Scholar 

  53. Y.A. Berchiche, T.P. Sakmar, CXC chemokine receptor 3 alternative splice variants selectively activate different signaling pathways. Mol Pharmacol 90, 483–495 (2016). https://doi.org/10.1124/mol.116.105502

    Article  CAS  PubMed  Google Scholar 

  54. M. Loetscher, B. Gerber, P. Loetscher, S.A. Jones, L. Piali, I. Clark-Lewis, M. Baggiolini, B. Moser, Chemokine receptor specific for IP10 and mig: Structure, function, and expression in activated T-lymphocytes. J Exp Med 184, 963–969 (1996). https://doi.org/10.1084/jem.184.3.963

    Article  CAS  PubMed  Google Scholar 

  55. C. Yang, W. Zheng, W. Du, CXCR3A contributes to the invasion and metastasis of gastric cancer cells. Oncol Rep 36, 1686–1692 (2016). https://doi.org/10.3892/or.2016.4953

    Article  CAS  PubMed  Google Scholar 

  56. L. Lasagni, M. Francalanci, F. Annunziato, E. Lazzeri, S. Giannini, L. Cosmi, C. Sagrinati, B. Mazzinghi, C. Orlando, E. Maggi, F. Marra, S. Romagnani, M. Serio, P. Romagnani, An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197, 1537–1549 (2003). https://doi.org/10.1084/jem.20021897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. C. Billottet, C. Quemener, A. Bikfalvi, CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta 1836, 287–295 (2013). https://doi.org/10.1016/j.bbcan.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  58. G.S. Campanella, B.D. Medoff, L.A. Manice, R.A. Colvin, A.D. Luster, Development of a novel chemokine-mediated in vivo T cell recruitment assay. J Immunol Meth 331, 127–139 (2008). https://doi.org/10.1016/j.jim.2007.12.002

    Article  CAS  Google Scholar 

  59. A. Martin-Fontecha, L.L. Thomsen, S. Brett, C. Gerard, M. Lipp, A. Lanzavecchia, F. Sallusto, Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nature Immunol 5, 1260–1265 (2004). https://doi.org/10.1038/ni1138

    Article  CAS  Google Scholar 

  60. X. Yang, Y. Chu, Y. Wang, R. Zhang, S. Xiong, Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. J Leuk Biol 80, 1434–1444 (2006). https://doi.org/10.1189/jlb.0306212

    Article  CAS  Google Scholar 

  61. M.J. Smyth, E. Cretney, M.H. Kershaw, Y. Hayakawa, Cytokines in cancer immunity and immunotherapy. Immunol Rev 202, 275–293 (2004). https://doi.org/10.1111/j.0105-2896.2004.00199.x

    Article  CAS  PubMed  Google Scholar 

  62. S.C. Robinson, L.M. Coussens, Soluble mediators of inflammation during tumor development. Adv Cancer Res 93, 159–187 (2005). https://doi.org/10.1016/s0065-230x(05)93005-4

    Article  CAS  PubMed  Google Scholar 

  63. F. Balkwill, A. Mantovani, Inflammation and cancer: Back to Virchow? Lancet 357, 539–545 (2001). https://doi.org/10.1016/s0140-6736(00)04046-0

    Article  CAS  PubMed  Google Scholar 

  64. J.M. Wang, X. Deng, W. Gong, S. Su, Chemokines and their role in tumor growth and metastasis. J Immunol Meth 220, 1–17 (1998). https://doi.org/10.1016/s0022-1759(98)00128-8

    Article  CAS  Google Scholar 

  65. K.E. de Visser, A. Eichten, L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nature Rev Cancer 6, 24–37 (2006). https://doi.org/10.1038/nrc1782

    Article  CAS  Google Scholar 

  66. Y. Ouyang, K. Liu, M. Hao, R. Zheng, C. Zhang, Y. Wu, X. Zhang, N. Li, J. Zheng, D. Chen, Radiofrequency ablation-increased CXCL10 is associated with earlier recurrence of hepatocellular carcinoma by promoting stemness. Tumour Biol 37, 3697–3704 (2016). https://doi.org/10.1007/s13277-015-4035-5

    Article  CAS  PubMed  Google Scholar 

  67. K. Kawada, H. Hosogi, M. Sonoshita, H. Sakashita, T. Manabe, Y. Shimahara, Y. Sakai, A. Takabayashi, M. Oshima, M.M. Taketo, Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene 26, 4679–4688 (2007). https://doi.org/10.1038/sj.onc.1210267

    Article  CAS  PubMed  Google Scholar 

  68. C. Liu, D. Luo, B.A. Reynolds, G. Meher, A.R. Katritzky, B. Lu, C.J. Gerard, C.P. Bhadha, J.K. Harrison, Chemokine receptor CXCR3 promotes growth of glioma. Carcinogenesis 32, 129–137 (2011). https://doi.org/10.1093/carcin/bgq224

    Article  CAS  PubMed  Google Scholar 

  69. S.V. Maru, K.A. Holloway, G. Flynn, C.L. Lancashire, A.J. Loughlin, D.K. Male, I.A. Romero, Chemokine production and chemokine receptor expression by human glioma cells: Role of CXCL10 in tumour cell proliferation. J Neuroimmunol 199, 35–45 (2008). https://doi.org/10.1016/j.jneuroim.2008.04.029

    Article  CAS  PubMed  Google Scholar 

  70. M. Loetscher, P. Loetscher, N. Brass, E. Meese, B. Moser, Lymphocyte-specific chemokine receptor CXCR3: Regulation, chemokine binding and gene localization. Eur J Immunol 28, 3696–3705 (1998). https://doi.org/10.1002/(sici)1521-4141(199811)28:11<3696::aid-immu3696>3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  71. A. Marusyk, K. Polyak, Tumor heterogeneity: Causes and consequences. Biochim Biophys Acta 1805, 105–117 (2010). https://doi.org/10.1016/j.bbcan.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  72. T.J. Zumwalt, M. Arnold, A. Goel, C.R. Boland, Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB+ CD8+ T-cell infiltration. Oncotarget 6, 2981–2991 (2015). https://doi.org/10.18632/oncotarget.3205

    Article  PubMed  Google Scholar 

  73. J.H. Dufour, M. Dziejman, M.T. Liu, J.H. Leung, T.E. Lane, A.D. Luster, IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168, 3195–3204 (2002). https://doi.org/10.4049/jimmunol.168.7.3195

    Article  CAS  PubMed  Google Scholar 

  74. M. Rentoft, P.J. Coates, L. Loljung, T. Wilms, G. Laurell, K. Nylander, Expression of CXCL10 is associated with response to radiotherapy and overall survival in squamous cell carcinoma of the tongue. Tumour Biol 35, 4191–4198 (2014). https://doi.org/10.1007/s13277-013-1549-6

    Article  CAS  PubMed  Google Scholar 

  75. H. Bronger, J. Singer, C. Windmuller, U. Reuning, D. Zech, C. Delbridge, J. Dorn, M. Kiechle, B. Schmalfeldt, M. Schmitt, S. Avril, CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Brit J Cancer 115, 553–563 (2016). https://doi.org/10.1038/bjc.2016.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. A.G. Cuenca, J.L. Wynn, K.M. Kelly-Scumpia, P.O. Scumpia, L. Vila, M.J. Delano, C.E. Mathews, S.M. Wallet, W.H. Reeves, K.E. Behrns, D.C. Nacionales, P.A. Efron, S.L. Kunkel, L.L. Moldawer, Critical role for CXC ligand 10/CXC receptor 3 signaling in the murine neonatal response to sepsis. Infect Immunol 79, 2746–2754 (2011). https://doi.org/10.1128/iai.01291-10

    Article  CAS  Google Scholar 

  77. J.A. Curtin, J. Fridlyand, T. Kageshita, H.N. Patel, K.J. Busam, H. Kutzner, K.H. Cho, S. Aiba, E.B. Brocker, P.E. LeBoit, D. Pinkel, B.C. Bastian, Distinct sets of genetic alterations in melanoma. New Engl J Med 353, 2135–2147 (2005). https://doi.org/10.1056/NEJMoa050092

    Article  CAS  PubMed  Google Scholar 

  78. M. Winder, A. Viros, Mechanisms of drug resistance in melanoma. Handbook Exp Pharmacol 249, 91–108 (2018). https://doi.org/10.1007/164_2017_17

    Article  CAS  Google Scholar 

  79. P. Sharma, J.P. Allison, Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 161, 205–214 (2015). https://doi.org/10.1016/j.cell.2015.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. K. Wing, Y. Onishi, P. Prieto-Martin, T. Yamaguchi, M. Miyara, Z. Fehervari, T. Nomura, S. Sakaguchi, CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008). https://doi.org/10.1126/science.1160062

    Article  CAS  PubMed  Google Scholar 

  81. Y. Latchman, C.R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A.J. Long, J.A. Brown, R. Nunes, E.A. Greenfield, K. Bourque, V.A. Boussiotis, L.L. Carter, B.M. Carreno, N. Malenkovich, H. Nishimura, T. Okazaki, T. Honjo, A.H. Sharpe, G.J. Freeman, PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunol 2, 261–268 (2001). https://doi.org/10.1038/85330

    Article  CAS  Google Scholar 

  82. R.J. Greenwald, Y.E. Latchman, A.H. Sharpe, Negative co-receptors on lymphocytes. Curr Opin Immunol 14, 391–396 (2002). https://doi.org/10.1016/s0952-7915(02)00341-2

    Article  CAS  PubMed  Google Scholar 

  83. X. Jiang, J. Wang, X. Deng, F. Xiong, J. Ge, B. Xiang, X. Wu, J. Ma, M. Zhou, X. Li, Y. Li, G. Li, W. Xiong, C. Guo, Z. Zeng, Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18, 10 (2019). https://doi.org/10.1186/s12943-018-0928-4

    Article  PubMed  PubMed Central  Google Scholar 

  84. J. Larkin, F.S. Hodi, J.D. Wolchok, Combined Nivolumab and Ipilimumab or Monotherapy in untreated melanoma. New Engl J Med 373, 1270–1271 (2015). https://doi.org/10.1056/NEJMc1509660

    Article  PubMed  Google Scholar 

  85. B. Escudier, P. Sharma, D.F. McDermott, S. George, H.J. Hammers, S. Srinivas, S.S. Tykodi, J.A. Sosman, G. Procopio, E.R. Plimack, D. Castellano, H. Gurney, F. Donskov, K. Peltola, J. Wagstaff, T.C. Gauler, T. Ueda, H. Zhao, I.M. Waxman, R.J. Motzer, Erratum to "CheckMate 025 Randomized Phase 3 Study: Outcomes by Key Baseline Factors and Prior Therapy for Nivolumab Versus Everolimus in Advanced Renal Cell Carcinoma" [Eur Urol 2017;72:962–71]. Eur Urol 73, e116–e118 (2018). https://doi.org/10.1016/j.eururo.2017.12.016

    Article  PubMed  Google Scholar 

  86. U. Barash, Y. Zohar, G. Wildbaum, K. Beider, A. Nagler, N. Karin, N. Ilan, I. Vlodavsky, Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia 28, 2178–2187 (2014). https://doi.org/10.1038/leu.2014.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. M.R. Zamani, S. Aslani, A. Salmaninejad, M.R. Javan, N. Rezaei, PD-1/PD-L and autoimmunity: A growing relationship. Cell Immunol 310, 27–41 (2016). https://doi.org/10.1016/j.cellimm.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  88. B. Zhang, S. Chikuma, S. Hori, S. Fagarasan, T. Honjo, Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc Natl Acad Sci U S A 113, 8490–8495 (2016). https://doi.org/10.1073/pnas.1608873113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. E. Ramelyte, S.A. Schindler, R. Dummer, The safety of anti PD-1 therapeutics for the treatment of melanoma. Exp Opin Drug Safety 16, 41–53 (2017). https://doi.org/10.1080/14740338.2016.1248402

    Article  CAS  Google Scholar 

  90. D.A. Arenberg, E.S. White, M.D. Burdick, S.R. Strom, R.M. Strieter, Improved survival in tumor-bearing SCID mice treated with interferon-gamma-inducible protein 10 (IP-10/CXCL10). Cancer Immunol Immunother 50, 533–538 (2001). https://doi.org/10.1007/s00262-001-0231-9

    Article  CAS  PubMed  Google Scholar 

  91. Y. Toiyama, H. Fujikawa, M. Kawamura, K. Matsushita, S. Saigusa, K. Tanaka, Y. Inoue, K. Uchida, Y. Mohri, M. Kusunoki, Evaluation of CXCL10 as a novel serum marker for predicting liver metastasis and prognosis in colorectal cancer. Int J Oncol 40, 560–566 (2012). https://doi.org/10.3892/ijo.2011.1247

    Article  CAS  PubMed  Google Scholar 

  92. R. Khanmohammadi, F. Mir, G. Baniebrahimi, Oral tumors in children: Diagnosis and management. J Cell Biochem 119, 2474–2483 (2018). https://doi.org/10.1002/jcb.26316

    Article  CAS  PubMed  Google Scholar 

  93. H. Harlin, Y. Meng, A.C. Peterson, Y. Zha, M. Tretiakova, C. Slingluff, M. McKee, T.F. Gajewski, Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69, 3077–3085 (2009). https://doi.org/10.1158/0008-5472.can-08-2281

    Article  CAS  PubMed  Google Scholar 

  94. M. Neagu, C. Constantin, C. Longo, Chemokines in the melanoma metastasis biomarkers portrait. J Immunoassay Immunochemistry 36, 559–566 (2015). https://doi.org/10.1080/15321819.2015.1035593

    Article  CAS  Google Scholar 

  95. H. Kobayashi, Y. Nobeyama, H. Nakagawa, Tumor-suppressive effects of natural-type interferon-beta through CXCL10 in melanoma. Biochem Biophys Res Comm 464, 416–421 (2015). https://doi.org/10.1016/j.bbrc.2015.06.122

    Article  CAS  PubMed  Google Scholar 

  96. G.M. Wiedemann, C. Aithal, A. Kraechan, C. Heise, B.L. Cadilha, J. Zhang, P. Duewell, R. Ballotti, S. Endres, C. Bertolotto, S. Kobold, Microphthalmia-associated transcription factor (MITF) regulates immune cell migration into melanoma. Transl Oncol 12, 350–360 (2019). https://doi.org/10.1016/j.tranon.2018.10.014

    Article  PubMed  Google Scholar 

  97. D. D'Arcangelo, F. Facchiano, G. Nassa, A. Stancato, A. Antonini, S. Rossi, C. Senatore, M. Cordella, C. Tabolacci, A. Salvati, R. Tarallo, A. Weisz, A.M. Facchiano, A. Facchiano, PDGFR-alpha inhibits melanoma growth via CXCL10/IP-10: a multi-omics approach. Oncotarget 7, 77257–77275 (2016). https://doi.org/10.18632/oncotarget.12629

    Article  PubMed  PubMed Central  Google Scholar 

  98. A. Kawamata, D. Ito, T. Odani, T. Isobe, M. Iwase, M. Hatori, M. Nagumo, Thalidomide suppresses melanoma growth by activating natural killer cells in mice. Oncol Rep 16, 1231–1236 (2006)

    CAS  PubMed  Google Scholar 

  99. A. Szabo, R.M. Osman, I. Bacskai, B.V. Kumar, Z. Agod, A. Lanyi, P. Gogolak, E. Rajnavolgyi, Temporally designed treatment of melanoma cells by ATRA and polyI: C results in enhanced chemokine and IFNbeta secretion controlled differently by TLR3 and MDA5. Melanoma Res 22, 351–361 (2012). https://doi.org/10.1097/CMR.0b013e328357076c

    Article  CAS  PubMed  Google Scholar 

  100. W. Peng, C. Liu, C. Xu, Y. Lou, J. Chen, Y. Yang, H. Yagita, W.W. Overwijk, G. Lizee, L. Radvanyi, P. Hwu, PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res 72, 5209–5218 (2012). https://doi.org/10.1158/0008-5472.can-12-1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Z.S. Chheda, R.K. Sharma, V.R. Jala, A.D. Luster, B. Haribabu, Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors. J Immunol 197, 2016–2026 (2016). https://doi.org/10.4049/jimmunol.1502376

    Article  CAS  PubMed  Google Scholar 

  102. R.R. Ji, S.D. Chasalow, L. Wang, O. Hamid, H. Schmidt, J. Cogswell, S. Alaparthy, D. Berman, M. Jure-Kunkel, N.O. Siemers, J.R. Jackson, V. Shahabi, An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61, 1019–1031 (2012). https://doi.org/10.1007/s00262-011-1172-6

    Article  CAS  PubMed  Google Scholar 

  103. R. Barreira da Silva, M.E. Laird, N. Yatim, L. Fiette, M.A. Ingersoll, M.L. Albert, Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nature Immunol 16, 850–858 (2015). https://doi.org/10.1038/ni.3201

    Article  CAS  Google Scholar 

  104. Y. Li, M. Fang, J. Zhang, J. Wang, Y. Song, J. Shi, W. Li, G. Wu, J. Ren, Z. Wang, W. Zou, L. Wang, Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 5, e1074374 (2016). https://doi.org/10.1080/2162402x.2015.1074374

    Article  PubMed  Google Scholar 

  105. M. Hong, A.L. Puaux, C. Huang, L. Loumagne, C. Tow, C. Mackay, M. Kato, A. Prevost-Blondel, M.F. Avril, A. Nardin, J.P. Abastado, Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res 71, 6997–7009 (2011). https://doi.org/10.1158/0008-5472.can-11-1466

    Article  CAS  PubMed  Google Scholar 

  106. D. Bedognetti, T.L. Spivey, Y. Zhao, L. Uccellini, S. Tomei, M.E. Dudley, M.L. Ascierto, V. De Giorgi, Q. Liu, L.G. Delogu, M. Sommariva, M.R. Sertoli, R. Simon, E. Wang, S.A. Rosenberg, F.M. Marincola, CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Brit J Cancer 109, 2412–2423 (2013). https://doi.org/10.1038/bjc.2013.557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. F. Ulloa-Montoya, J. Louahed, B. Dizier, O. Gruselle, B. Spiessens, F.F. Lehmann, S. Suciu, W.H. Kruit, A.M. Eggermont, J. Vansteenkiste, V.G. Brichard, Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 31, 2388–2395 (2013). https://doi.org/10.1200/jco.2012.44.3762

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Reza Mirzaei or Hamed Mirzaei.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Pourhanifeh, M.H., Derakhshan, M. et al. CXCL-10: a new candidate for melanoma therapy?. Cell Oncol. 43, 353–365 (2020). https://doi.org/10.1007/s13402-020-00501-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00501-z

Keywords

Navigation