Skip to main content

Advertisement

Log in

C1 Esterase Inhibitor Reduces BBB Leakage and Apoptosis in the Hypoxic Developing Mouse Brain

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Inflammatory pathways involved in blood–brain barrier (BBB) vulnerability and hypoxic brain oedema in models of perinatal brain injury seem to provide putative therapeutic targets. To investigate impacts of C1-esterase inhibitor (C1-INH; 7.5–30 IU/kg, i.p.) on functional BBB properties in the hypoxic developing mouse brain (P7; 8% O2 for 6 h), expression of pro-apoptotic genes (BNIP3, DUSP1), inflammatory markers (IL-1ß, TNF-alpha, IL-6, MMP), and tight junction proteins (ZO-1, occludin, claudin-1, -5), and S100b protein concentrations were analysed after a regeneration period of 24 h. Apoptotic cell death was quantified by CC3 immunohistochemistry and TUNEL staining. In addition to increased apoptosis in the parietal cortex, hippocampus, and subventricular zone, hypoxia significantly enhanced the brain-to-plasma albumin ratio, the cerebral S100b protein levels, BNIP3 and DUSP1 mRNA concentrations as well as mRNA expression of pro-inflammatory cytokines (IL-1ß, TNF-alpha). In response to C1-INH, albumin ratio and S100b concentrations were similar to those of controls. However, the mRNA expression of BNIP3 and DUSP1 and pro-inflammatory cytokines as well as the degree of apoptosis were significantly decreased compared to non-treated controls. In addition, occludin mRNA levels were elevated in response to C1-INH (p < 0.01). Here, we demonstrate for the first time that C1-INH significantly decreased hypoxia-induced BBB leakage and apoptosis in the developing mouse brain, indicating its significance as a promising target for neuroprotective therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

BNIP3:

BCL2 Interacting Protein 3

C1-INH:

C1 esterase inhibitor

CC3:

Cleaved caspase 3

DUSP1:

Dual specificity phosphatase 1

FOV:

Field of view

HI:

Hypoxia and ischemia

HIF:

Hypoxia-inducible transcription factors

MMP:

Matrix metalloproteinase

TIMP:

Tissue inhibitor of metalloproteinases

ZO-1:

Zona occludens protein 1

IL:

Interleukin

TNF-alpha:

Tumour necrosis factor-alpha

References

  • Ahearne, C. E., Boylan, G. B., & Murray, D. M. (2016). Short and long term prognosis in perinatal asphyxia: An update. World Journal of Clinical Pediatrics,5, 67–74.

    PubMed  PubMed Central  Google Scholar 

  • Albert-Weissenberger, C., Mencl, S., Schuhmann, M. K., Salur, I., Göb, E., Langhauser, F., et al. (2014). C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation. Frontiers in Cellular Neuroscience,8, 269.

    PubMed  PubMed Central  Google Scholar 

  • Alluri, H., Wilson, R. L., Anasooya Shaji, C., Wiggins-Dohlvik, K., Patel, S., Liu, Y., et al. (2016). Melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibition. PLoS ONE,2016(11), e0154427.

    Google Scholar 

  • Althaus, J., Bernaudin, M., Petit, E., Toutain, J., Touzani, O., & Rami, A. (2006). Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1alpha (HIF-1alpha) protein following focal cerebral ischemia in rats. Neurochemistry International,48, 687–695.

    CAS  PubMed  Google Scholar 

  • Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research,64, 5245–5250.

    CAS  PubMed  Google Scholar 

  • Azzopardi, D., Strohm, B., Marlow, N., Brocklehurst, P., Deierl, A., Eddama, O., et al. (2014). Effects of hypothermia for perinatal asphyxia on childhood outcomes. New England Journal of Medicine,371, 140–149.

    CAS  PubMed  Google Scholar 

  • Baghirova, S., Hughes, B. G., Hendzel, M. J., & Schulz, R. (2015). Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. MethodsX.,2015(2), 440–445.

    Google Scholar 

  • Bernaudin, M., Tang, Y., Reilly, M., Petit, E., & Sharp, F. R. (2002). Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Journal of Biological Chemistry,277, 39728–39738.

    CAS  PubMed  Google Scholar 

  • Bonestroo, H. J., Heijnen, C. J., Groenendaal, F., van Bel, F., & Nijboer, C. H. (2015). Development of cerebral gray and white matter injury and cerebral inflammation over time after inflammatory perinatal asphyxia. Developmental Neuroscience,37, 78–94.

    CAS  PubMed  Google Scholar 

  • Burek, M., König, A., Lang, M., Fiedler, J., Oerter, S., Roewer, N., et al. (2019). Hypoxia-induced microRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Translational Stroke Research. https://doi.org/10.1007/s12975-018-0683-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Arumugam, T. V., Cheng, Y. L., Lee, J. H., Chigurupati, S., Mattson, M. P., et al. (2018). Combination therapy with low-dose IVIG and a C1-esterase inhibitor ameliorates brain damage and functional deficits in experimental ischemic stroke. Neuromolecular Medicine,20, 63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Threlkeld, S. W., Cummings, E. E., Juan, I., Makeyev, O., Besio, W. G., et al. (2012). Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus. Neuroscience,226, 89–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevin, M., Guiraut, C., Maurice-Gelinas, C., Deslauriers, J., Grignon, S., & Sébire, G. (2016). Neuroprotective effects of hypothermia in inflammatory-sensitized hypoxic-ischemic encephalopathy. International Journal of Developmental Neuroscience,55, 1–8.

    PubMed  Google Scholar 

  • Chu, H. X., & Jones, N. M. (2016). Changes in hypoxia-Inducible factor-1 (HIF-1) and regulatory prolyl hydroxylase (PHD) enzymes following hypoxic-ischemic Injury in the neonatal rat. Neurochemical Research,41, 515–522.

    CAS  PubMed  Google Scholar 

  • Davis, A. S., Berger, V. K., & Chock, V. Y. (2016). Perinatal neuroprotection for extremely preterm infants. American Journal of Perinatology,33, 290–296.

    PubMed  Google Scholar 

  • De Simoni, M. G., Storini, C., Barba, M., Catapano, L., Arabia, A. M., Rossi, E., et al. (2003). Neuroprotection by complement (C1) inhibitor in mouse transient brain ischemia. Journal of Cerebral Blood Flow and Metabolism,23, 232–239.

    PubMed  Google Scholar 

  • De Simoni, M. G., Rossi, E., Storini, C., Pizzimenti, S., Echart, C., Bergamaschini, L. (2004). The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. Journal of Pathology, 164, 1857–1863

    Google Scholar 

  • Diaz, R., Miguel, P. M., Deniz, B. F., Confortim, H. D., Barbosa, S., Mendonça, M. C. P., et al. (2016). Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia. International Journal of Developmental Neuroscience,53, 35–45.

    CAS  PubMed  Google Scholar 

  • Dixon, B. J., Reis, C., Ho, W. M., Tang, J., & Zhang, J. H. (2015). Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. International Journal of Molecular Sciences,16, 22368–22401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development,3, 79–83.

    CAS  PubMed  Google Scholar 

  • Donato, R., Cannon, B. R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D. J., et al. (2013). Functions of S100 proteins. Current Molecular Medicine,13, 24–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ek, C. J., D’Angelo, B., Baburamani, A. A., Lehner, C., Leverin, A. L., Smith, P. L., et al. (2015). Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. Journal of Cerebral Blood Flow and Metabolism,35, 818–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelhardt, S., Al-Ahmad, A. J., Gassmann, M., & Ogunshola, O. O. (2014). Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism. Journal of Cellular Physiology,229, 1096–1105.

    CAS  PubMed  Google Scholar 

  • Engelhardt, S., Huang, S. F., Patkar, S., Gassmann, M., & Ogunshola, O. O. (2015). Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: A comparative study. Fluids Barriers CNS,12, 4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald, M. P., Massey, S. L., Fung, F. W., Kessler, S. K., & Abend, N. S. (2018). High electroencephalographic seizure exposure is associated with unfavorable outcomes in neonates with hypoxic-ischemic encephalopathy. Seizure,61, 221–226.

    PubMed  PubMed Central  Google Scholar 

  • Gesuete, R., Storini, C., Fantin, A., Stravalaci, M., Zanier, E. R., Orsini, F., et al. (2009). Recombinant C1 inhibitor in brain ischemic injury. Annals of Neurology,66, 332–342.

    CAS  PubMed  Google Scholar 

  • Heydenreich, N., Nolte, M. W., Göb, E., Langhauser, F., Hofmeister, M., Kraft, P., et al. (2012). C1-inhibitor protects from brain ischemia-reperfusion injury by combined antiinflammatory and antithrombotic mechanisms. Stroke,43, 2457–2467.

    CAS  PubMed  Google Scholar 

  • Horstick, G., Berg, O., Heimann, A., Götze, O., Loos, M., Hafner, G., et al. (2001). Application of C1-esterase inhibitor during reperfusion of ischemic myocardium: Dose-related beneficial versus detrimental effects. Circulation,104, 3125–3131.

    CAS  PubMed  Google Scholar 

  • Hsu, Y. C., Chang, Y. C., Lin, Y. C., Sze, C. I., Huang, C. C., & Ho, C. J. (2014). Cerebral microvascular damage occurs early after hypoxia-ischemia via nNOS activation in the neonatal brain. Journal of Cerebral Blood Flow and Metabolism,34, 668–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Wang, Z., Pan, S., Zhang, H., Fang, M., Jiang, H., et al. (2017). Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget,8, 31638–31654.

    PubMed  PubMed Central  Google Scholar 

  • Kapural, M., Krizanac-Bengez, L., Barnett, G., Perl, J., Masaryk, T., Apollo, D., et al. (2002). Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Research,940, 102–104.

    CAS  PubMed  Google Scholar 

  • Kleindienst, A., Meissner, S., Eyupoglu, I. Y., Parsch, H., Schmidt, C., & Buchfelder, M. (2010). Dynamics of S100B release into serum and cerebrospinal fluid following acute brain injury. Acta Neurochirurgica. Supplementum,106, 247–250.

    CAS  Google Scholar 

  • Li, Q., Michaud, M., Park, C., Huang, Y., Couture, R., Girodano, F., et al. (2017). The role of endothelial HIF-1α in the response to sublethal hypoxia in C57BL/6 mouse pups. Laboratory Investigation,97, 356–369.

    CAS  PubMed  Google Scholar 

  • Longhi, L., Perego, C., Ortolano, F., Zanier, E. R., Bianchi, P., Stocchetti, N., et al. (2009). C1-inhibitor attenuates neurobehavioral deficits and reduces contusion volume after controlled cortical impact brain injury in mice. Critical Care Medicine,37, 659–665.

    CAS  PubMed  Google Scholar 

  • Marin, N., Zamorano, P., Carrasco, R., Mujica, P., Gonzalez, F. G., Quezada, C., et al. (2012). S-nitrosation of β-catenin and p120 catenin: A novel regulatory mechanism in endothelial hyperpermeability. Circulation Research,111, 553–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl, M. A., Bygum, A., Lumry, W., Magerl, M., Bernstein, J. A., Busse, P., et al. (2016). Safety and usage of C1-Inhibitor in hereditary angioedema: Berinert Registry Data. The Journal of Allergy and Clinical Immunology: In Practice,4, 963–971.

    PubMed  Google Scholar 

  • Savard, A., Brochu, M. E., Chevin, M., Guiraut, C., Grbic, D., & Sébire, G. (2015). Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia. Journal of Neuroinflammation,12, 111.

    PubMed  PubMed Central  Google Scholar 

  • Semenza, G. L. (2014). Oxygen sensing, hypoxia-inducible factors., and disease pathophysiology. Annual Review of Pathology: Mechanisms of Disease,9, 47–71.

    CAS  Google Scholar 

  • Stark, M. J., Hodyl, N. A., Belegar, V., & Andersen, C. C. (2016). Intrauterine inflammation, cerebral oxygen consumption and susceptibility to early brain injury in very preterm newborns. Archives of Disease in Childhood. Fetal and Neonatal Edition,101, F137–F142.

    PubMed  Google Scholar 

  • Storini, C., Rossi, E., Marrella, V., Distaso, M., Veerhuis, R., Vergani, C., et al. (2005). C1-inhibitor protects against brain ischemia-reperfusion injury via inhibition of cell recruitment and inflammation. Neurobiology of Diseases,19, 10–17.

    CAS  Google Scholar 

  • Tang, Z., Guo, D., Xiong, L., Wu, B., Xu, X., Fu, J., et al. (2018). TLR4/PKCα/occludin signaling pathway may be related to blood-brain barrier damage. Molecular Medicine Reports,18, 1051–1057.

    CAS  PubMed  Google Scholar 

  • Thelin, E. P., Nelson, D. W., & Bellander, B. M. (2017). A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochirurgica (Wien),159, 209–225.

    Google Scholar 

  • Tibbling, G., Link, H., & Ohman, S. (1977). Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scandinavian Journal of Clinical and Laboratory Investigation,37, 385–390.

    CAS  PubMed  Google Scholar 

  • Tomasi, S., Sarmientos, P., Giorda, G., Gurewich, V., & Vercelli, A. (2011). Mutant pro-urokinase with adjunctive C1-inhibitor is an effective and safer alternative to tPA in rat stroke. PLoS ONE,2011(6), e21999.

    Google Scholar 

  • Trollmann, R., Mühlberger, T., Richter, M., Boie, G., Feigenspan, A., Brackmann, F., et al. (2018). Differential regulation of angiogenesis in the developing mouse brain in response to exogenous activation of the hypoxia-inducible transcription factor system. Brain Research,1688, 91–102.

    CAS  PubMed  Google Scholar 

  • Valerieva, A., Caccia, S., & Cicardi, M. (2018). Recombinant human C1 esterase inhibitor (Conestat alfa) for prophylaxis to prevent attacks in adult and adolescent patients with hereditary angioedema. Expert Review of Clinical Immunology,14, 707–718.

    CAS  PubMed  Google Scholar 

  • Wang, L. W., Chang, Y. C., Chen, S. J., Tseng, C. H., Tu, Y. F., Liao, N. S., et al. (2014). TNFR1-JNK signaling is the shared pathway of neuroinflammation and neurovascular damage after LPS-sensitized hypoxic-ischemic injury in the immature brain. Journal of Neuroinflammation,11, 215.

    PubMed  PubMed Central  Google Scholar 

  • Wang, L. Y., Tu, Y. F., Lin, Y. C., & Huang, C. C. (2016). CXCL5 signalling is a shared pathway of neuroinflammation and blood-brain barrier injury contributing to white matter injury in the immature brain. Journal of Neuroinflammation,13, 6.

    PubMed  PubMed Central  Google Scholar 

  • Yang, Y., & Rosenberg, G. A. (2011). MMP-mediated disruption of claudin-5 in the blood-brain barrier of rat brain after cerebral ischemia. Methods in Molecular Biology,762, 333–345.

    CAS  PubMed  Google Scholar 

  • Zou, R., Xiong, T., Zhang, L., Li, S., Zhao, F., Tong, Y., et al. (2018). Proton magnetic resonance spectroscopy biomarkers in neonates with hypoxic-ischemic encephalopathy: A systematic review and meta-analysis. Frontiers in Neurology,9, 732.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by an unrestricted research grant from CSL Behring (RT, HGT)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Trollmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Topf, HG., Boie, G. et al. C1 Esterase Inhibitor Reduces BBB Leakage and Apoptosis in the Hypoxic Developing Mouse Brain. Neuromol Med 22, 31–44 (2020). https://doi.org/10.1007/s12017-019-08560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-019-08560-8

Keywords

Navigation