Skip to main content

Advertisement

Log in

Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water using leaf biomass (Vitis vinifera) in a fixed-bed column study

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Introduction

Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) onto modified activated carbons (AC-H3PO4) produced from leaf biomass of Vitis vinifera leaf litter in a fixed bed column experiment was investigated in this study.

Methods

The column bed was packed with the produced activated carbons in a uniform particle size of ˃ 64 μm. Experimental parameters including the initial concentration of the solution, column bed height, the mass of adsorbent and flow rate were optimized to establish the best adsorption efficiency parameters for the system. Breakthrough and saturated time were estimated from the column fixed bed experimental data and analysed using the Adam-Bohart, Thomas model, and Yoon-Nelson models.

Results

Maximum sorption capacities of produced activated carbon ACH3PO4 based on Thomas model were 159.61 and 208.64 mg/g for PFOA and PFOS, respectively. The results indicated the breakthrough and saturated time of the system increased concurrently with the increase in bed height and initial concentrations, while an increase in flow rate enhanced fractional bed utilization (FBU) efficiency of the column. Thomas and Yoon-Nelson model best describe the prediction of breakthrough data and sorption behaviour of PFOA and PFOS indicating suitability of AC-H3PO4 column design.

Conclusion

Findings suggest that agro based adsorbent is a good alternative to non-ago based adsorbent. The surface characteristics of the phosphoric acid modified activated carbons AC-H3PO4 affirmed the removal of PFOA and PFOS from the contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Post GB, Cohn PD, Cooper KR. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res. 2012;116:93–117.

    Article  CAS  Google Scholar 

  2. Anumol T, Dagnino S, Vandervort DR, Snyder SA. Transformation of Polyfluorinated compounds in natural waters by advanced oxidation processes. Chemosphere. 2016;144:1780–7.

    Article  CAS  Google Scholar 

  3. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH. Sources, fate and transport of perfluorocarboxylates. Environmental science & technology. 2006;40(1):32–44.

    Article  CAS  Google Scholar 

  4. Posner S. Perfluorinated compounds: occurrence and uses in products. Polyfluorinated chemicals and transformation products. Springer; 2012. p. 25–39.

  5. Elmonznino JA. Occurrence, Fate and Distribution Behaviors of Organic Contaminants, Perfluorinated Alkyl Acids and Phthalic Acid Esters, in Wastewater Effluent and the Housatonic River Estuary. 2016.

  6. Lee JW, Lee J-W, Kim K, Shin Y-J, Kim J, Kim S, et al. PFOA-induced metabolism disturbance and multi-generational reproductive toxicity in Oryzias latipes. J Hazard Mater. 2017;340:231–40.

    Article  CAS  Google Scholar 

  7. Ahrens L, Taniyasu S, Yeung LW, Yamashita N, Lam PK, Ebinghaus R. Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay. Japan Chemosphere. 2010;79(3):266–72.

    Article  CAS  Google Scholar 

  8. Lu Z, Song L, Zhao Z, Ma Y, Wang J, Yang H, et al. Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of eastern China. Chemosphere. 2015;119:820–7.

    Article  CAS  Google Scholar 

  9. Rand AA, Mabury SA. Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)? Toxicology. 2017;375:28–36.

    Article  CAS  Google Scholar 

  10. 3M. 3M Phase-out plan for PFOS-based products. 2000(US EPA Docket, AR 226–0588 (2000).

  11. USEPA. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). http://water.epa.gov/action/advisories/drinking/upload/2009_01_15_criteria_drinking_pha-PFOA_PFOS.pdf. 2009.

  12. Gao Y, Deng S, Du Z, Liu K, Yu G. Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: a comparative study. J Hazard Mater. 2017;323:550–7.

    Article  CAS  Google Scholar 

  13. Uddin MT, Rukanuzzaman M, Khan MMR, Islam MA. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed column study. J Environ Manag. 2009;90(11):3443–50.

    Article  CAS  Google Scholar 

  14. Lim AP, Aris AZ. Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochem Eng J. 2014;87:50–61.

    Article  CAS  Google Scholar 

  15. Ahmed M, Hameed B. Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: a review. Ecotoxicol Environ Saf. 2018;149:257–66.

    Article  CAS  Google Scholar 

  16. Darweesh TM, Ahmed MJ. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column. Ecotoxicol Environ Saf. 2017;138:139–45.

    Article  CAS  Google Scholar 

  17. Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K. Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour Technol. 2012;113:114–20.

    Article  CAS  Google Scholar 

  18. Agarwal S, Tyagi I, Gupta VK, Ghasemi N, Shahivand M, Ghasemi M. Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. J Mol Liq. 2016;218:208–18.

    Article  CAS  Google Scholar 

  19. Deng S, Nie Y, Du Z, Huang Q, Meng P, Wang B, et al. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J Hazard Mater. 2015;282:150–7.

    Article  CAS  Google Scholar 

  20. Zhong Z-Y, Yang Q, Li X-M, Luo K, Liu Y, Zeng G-M. Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol brilliant blue R adsorption. Ind Crop Prod. 2012;37(1):178–85.

    Article  CAS  Google Scholar 

  21. Akharame MO, Oputu OU, Pereao O, Fagbayigbo BO, Razanamahandry LC, Opeolu BO et al. Nanostructured Polymer Composites for Water Remediation. Nanostructured Materials for Treating Aquatic Pollution. Springer; 2019. p. 275-306.

  22. Yahya MA, Al-Qodah Z, Ngah CZ. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sust Energ Rev. 2015;46:218–35.

    Article  CAS  Google Scholar 

  23. Liao P, Zhan Z, Dai J, Wu X, Zhang W, Wang K, et al. Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: a batch and fixed-bed column study. Chem Eng J. 2013;228:496–505.

    Article  CAS  Google Scholar 

  24. García-Mateos FJ, Ruiz-Rosas R, Marqués MD, Cotoruelo LM, Rodríguez-Mirasol J, Cordero T. Removal of paracetamol on biomass-derived activated carbon: modeling the fixed bed breakthrough curves using batch adsorption experiments. Chem Eng J. 2015;279:18–30.

    Article  CAS  Google Scholar 

  25. Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl Orange from wastewaters using waste materials. J Hazard Mater. 2007;148(1):229–40.

    Article  CAS  Google Scholar 

  26. Fagbayigbo BO, Opeolu BO, Fatoki OS, Akenga TA, Olatunji OS. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environ Sci Pollut Res. 2017;24(14):13107–20. https://doi.org/10.1007/s11356-017-8912-x.

    Article  CAS  Google Scholar 

  27. Tian Y, Gao B, Morales VL, Chen H, Wang Y, Li H. Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere. 2013;90(10):2597–605.

    Article  CAS  Google Scholar 

  28. de Franco MAE, de Carvalho CB, Bonetto MM, de Pelegrini SR, Féris LA. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: kinetics, isotherms, experimental design and breakthrough curves modelling. J Clean Prod. 2017;161:947–56.

    Article  CAS  Google Scholar 

  29. Sotelo J, Rodríguez A, Álvarez S, García J. Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chem Eng Res Des. 2012;90(7):967–74.

    Article  CAS  Google Scholar 

  30. Foroughi-dahr M, Esmaieli M, Abolghasemi H, Shojamoradi A, Sadeghi PE. Continuous adsorption study of Congo red using tea waste in a fixed-bed column. Desalin Water Treat. 2016;57(18):8437–46.

    Article  CAS  Google Scholar 

  31. Bohart G, Adams E. Behaviour of charcoal towards chlorine. J Chem Soc. 1920;42:523–44.

    Article  CAS  Google Scholar 

  32. Thomas HC. Heterogeneous ion exchange in a flowing system. J Am Chem Soc. 1944;66(10):1664–6.

    Article  CAS  Google Scholar 

  33. Yoon YH, NELSON JH. Application of gas adsorption kinetics I. a theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J. 1984;45(8):509–16.

    Article  CAS  Google Scholar 

  34. Ghaffar SH, Fan M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy. 2013;57:264–79.

    Article  CAS  Google Scholar 

  35. Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC. KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chem Eng J. 2016;286:476–84.

    Article  CAS  Google Scholar 

  36. Sohni S, Norulaini NN, Hashim R, Khan SB, Fadhullah W, Omar AM. Physicochemical characterization of Malaysian crop and agro-industrial biomass residues as renewable energy resources. Ind Crop Prod. 2018;111:642–50.

    Article  CAS  Google Scholar 

  37. Guillossou R, Le Roux J, Mailler R, Morlay C, Vulliet E, Nauleau F, et al. Influence of the properties of 7 micro-grain activated carbons on organic micropollutants removal from wastewater effluent. Chemosphere. 2020;243:125306.

    Article  CAS  Google Scholar 

  38. Zhang P, Wang T, Qian G, Wu D, Frost RL. Removal of methyl orange from aqueous solutions through adsorption by calcium aluminate hydrates. J Colloid Interface Sci. 2014;426:44–7.

    Article  CAS  Google Scholar 

  39. Xu M, Wang H, Lei D, Qu D, Zhai Y, Wang Y. Removal of Pb (II) from aqueous solution by hydrous manganese dioxide: adsorption behavior and mechanism. J Environ Sci. 2013;25(3):479–86.

    Article  CAS  Google Scholar 

  40. de Franco MAE, de Carvalho CB, Bonetto MM, de Pelegrini SR, Féris LA. Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modeling. J Clean Prod. 2018;181:145–54.

    Article  CAS  Google Scholar 

  41. Xiao F, Simcik MF, Gulliver JS. Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water Res. 2013;47(1):49–56.

    Article  CAS  Google Scholar 

  42. Sivakumar P, Palanisamy P. Packed bed column studies for the removal of acid blue 92 and basic red 29 using non-conventional adsorbent. 2009.

  43. Dong Y, Lin H. Competitive adsorption of Pb (II) and Zn (II) from aqueous solution by modified beer lees in a fixed bed column. Process Saf Environ Prot. 2017;111:263–9.

    Article  CAS  Google Scholar 

  44. Nwabanne J, Igbokwe P. Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre. International Journal of Applied Science and Technology. 2012;2(5).

  45. Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Silvestre-Albero J. Assessment of naproxen adsorption on bone char in aqueous solutions using batch and fixed-bed processes. J Mol Liq. 2015;209:187–95.

    Article  CAS  Google Scholar 

  46. Nazari G, Abolghasemi H, Esmaieli M, Pouya ES. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: a fixed-bed column study. Appl Surf Sci. 2016;375:144–53.

    Article  CAS  Google Scholar 

  47. Mishra A, Tripathi BD, Rai AK. Packed-bed column biosorption of chromium (VI) and nickel (II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicol Environ Saf. 2016;132:420–8.

    Article  CAS  Google Scholar 

  48. Sotelo JL, Ovejero G, Rodríguez A, Álvarez S, García J. Analysis and modeling of fixed bed column operations on flumequine removal onto activated carbon: pH influence and desorption studies. Chem Eng J. 2013;228:102–13.

    Article  CAS  Google Scholar 

  49. Ahmad A, Hameed B. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J Hazard Mater. 2010;175(1–3):298–303.

    Article  CAS  Google Scholar 

  50. Meng P, Deng S, Wang B, Huang J, Wang Y, Yu G. Superhigh adsorption of perfluorooctane sulfonate on aminated polyacrylonitrile fibers with the assistance of air bubbles. Chem Eng J. 2017;315:108–14.

    Article  CAS  Google Scholar 

  51. Maleki A, Hayati B, Najafi F, Gharibi F, Joo SW. Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: preparation, characterization and adsorption studies. J Mol Liq. 2016;224:95–104.

    Article  CAS  Google Scholar 

  52. Johnson RL, Anschutz AJ, Smolen JM, Simcik MF, Penn RL. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. J Chem Eng Data. 2007;52(4):1165–70.

    Article  CAS  Google Scholar 

  53. Mahmoodi NM, Sadeghi U, Maleki A, Hayati B, Najafi F. Synthesis of cationic polymeric adsorbent and dye removal isotherm, kinetic and thermodynamic. J Ind Eng Chem. 2014;20(5):2745–53.

    Article  CAS  Google Scholar 

  54. Yavari S, Mahmodi NM, Teymouri P, Shahmoradi B, Maleki A. Cobalt ferrite nanoparticles: preparation, characterization and anionic dye removal capability. J Taiwan Inst Chem Eng. 2016;59:320–9.

    Article  CAS  Google Scholar 

  55. Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater. 2017;336:146–57.

    Article  CAS  Google Scholar 

  56. Oladipo AA, Abureesh MA, Gazi M. Bifunctional composite from spent “Cyprus coffee” for tetracycline removal and phenol degradation: solar-Fenton process and artificial neural network. Int J Biol Macromol. 2016;90:89–99.

    Article  CAS  Google Scholar 

  57. Patiño Y, Díaz E, Ordóñez S. Pre-concentration of nalidixic acid through adsorption–desorption cycles: adsorbent selection and modeling. Chem Eng J. 2016;283:486–94.

    Article  CAS  Google Scholar 

  58. Han R, Wang Y, Zhao X, Wang Y, Xie F, Cheng J, et al. Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination. 2009;245(1–3):284–97.

    Article  CAS  Google Scholar 

  59. Noreen S, Bhatti HN, Nausheen S, Sadaf S, Ashfaq M. Batch and fixed bed adsorption study for the removal of Drimarine black CL-B dye from aqueous solution using a lignocellulosic waste: a cost affective adsorbent. Ind Crop Prod. 2013;50:568–79.

    Article  CAS  Google Scholar 

  60. Rocha PD, Franca AS, Oliveira LS. Batch and column studies of phenol adsorption by an activated carbon based on acid treatment of corn cobs. International Journal of Engineering and Technology. 2015;7(6):459.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are profoundly grateful to the Cape Peninsula University of Technology, South Africa for the availability of facilities and National Research Foundation (NRF) South Africa, Thuthuka Research Grant No. 84185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. O. Fagbayigbo.

Ethics declarations

Conflict of interest

There is no conflict of interest in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagbayigbo, B.O., Opeolu, B.O. & Fatoki, O.S. Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water using leaf biomass (Vitis vinifera) in a fixed-bed column study. J Environ Health Sci Engineer 18, 221–233 (2020). https://doi.org/10.1007/s40201-020-00456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00456-1

Keywords

Navigation