Skip to main content

Advertisement

Log in

Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Soil contamination is an increasing global problem. Efforts are underway to minimize the release of contaminants and develop effective bioremediation strategies. Contaminated soil can be treated by phytoremediation that is dependent on the contaminant and soil properties and plant growth rate. In recent decades, soil microbes have been used successfully to enhance the capacity of plants to tolerate, remove and/or degrade contaminants. This paper reviews the principles and applications of microbe-assisted phytoremediation, including the factors that influence phytoremediation, and the mechanisms of microbial remediation. Inoculation with specific contaminant-degrading bacteria and plant growth-promoting rhizobacteria is effective in enhancing phytoremediation. However, in the context of serious and complicated cases of environmental pollution exacerbated by climate change, it is critical to increase the knowledge about the mechanisms of microbe-assisted phytoremediation to underpin the selection of most appropriate phytoremediation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abhilash PC, Srivastava S, Srivastava P, Singh B, Jafri A, Singh N (2011) Influence of rhizospheric microbial inoculation and tolerant plant species on the rhizoremediation of lindane. Environ Exp Bot 74:127–130

    CAS  Google Scholar 

  • Acevedo F, Pizzul L, Castillo MP, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219

    CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    CAS  Google Scholar 

  • Agnello AC, Bagard M, Van EH, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    CAS  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2015) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68:852–858

    CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483

    Google Scholar 

  • Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S (2012) Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresource Technol 112:83–90

    CAS  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32:271–280

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501

    CAS  Google Scholar 

  • Brito EM, De LCBN, Caretta CA, Goã I, Urriza M, Andrade LH, Cuevas-Rodrã Guez G, Malm O, Torres JP, Simon M, Guyoneaud R (2015) Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Sci Total Environ 521–522:1–10

    Google Scholar 

  • Cai Z, Zhou Q, Peng S, Li K (2010) Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. J Hazard Mater 183:731–737

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotech 8:279–284

    CAS  Google Scholar 

  • Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediat 16:1133–1147

    CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12:34–48

    CAS  Google Scholar 

  • Chen CH, Zhou QX, Zhang C, Wang YY (2010) Effects of soil polycyclic musk and cadmium on pollutant uptake and biochemical responses of wheat (Triticum aestivum). Arch Environ Contam Toxicol 59:564–573

    CAS  Google Scholar 

  • Chen S, Yin H, Ye J, Peng H, Liu Z, Dang Z, Chang J (2014) Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresour Technol 158:181–187

    CAS  Google Scholar 

  • Chen S, Duan G, Ding K, Huang F, Zhu Y (2018) DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol Ecol 94:fiy026

    Google Scholar 

  • Cui G, Chien M, Suto K, Inoue C (2017) Analysis of stable 1,2-dichlorobenzene-degrading enrichments and two newly isolated degrading strains, Acidovorax sp. sk40 and Ralstonia sp. sk41. Appl Microbiol Biot 101:6821–6828

    CAS  Google Scholar 

  • Dmuchowski W, Brągoszewska P, Suwara I, Gozdowski D, Baczewska AH (2014) Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecol Eng 71:32–35

    Google Scholar 

  • Dong R, Gu L, Guo C, Xun F, Liu J (2014) Effect of PGPR Serratia marcescens BC-3 and AMF Glomus intraradices on phytoremediation of petroleum contaminated soil. Ecotoxicology 23:674–680

    CAS  Google Scholar 

  • Dushenko WT, Bright DA, Reimer KJ (1995) Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients. Aquat Bot 50:141–158

    CAS  Google Scholar 

  • Feng N, Yu J, Zhao H, Cheng Y, Mo C, Cai Q, Li Y, Li H, Wong M (2017) Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ 583:352–368

    CAS  Google Scholar 

  • Francis AJ, Dodge CJ (1988) Anaerobic microbial dissolution of transition and heavy metal oxides. Appl Environ Microb 54:1009–1014

    CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotech 11:271–279

    CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227

    CAS  Google Scholar 

  • Hadibarata T, Kristanti RA (2012) Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresource Technol 107:314–318

    CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    CAS  Google Scholar 

  • Homan L, Wu FY, Kwaichung C, Ye ZH, Minghung W (2010) The effect of arbuscular mycorrhizal fungi and phosphate amendment on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil. Int J Phytoremediat 12:384–403

    Google Scholar 

  • Hu X, Zhang X, Liu X, Cao L, Chen J, Huo Z (2017) The contribution of pyrene degrading bacteria and chemical reagents to Scirpus triqueter phytoremediation of pyrene and Ni co-contaminated soil. Water Air Soil Poll 228:295

    Google Scholar 

  • Huang XD, Elalawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  Google Scholar 

  • Khandare RV, Rane NR, Waghmode TR, Govindwar SP (2012) Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Sci Pollut R 19:1709–1718

    CAS  Google Scholar 

  • Khandare RV, Kabra AN, Awate AV, Govindwar SP (2013) Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ Sci Technol 10:1039–1050

    CAS  Google Scholar 

  • Knox RC, Sabatini DA (2009) Transport and remediation of subsurface contaminants. American Chemical Society, Washington DC, USA

    Google Scholar 

  • Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132

    Google Scholar 

  • Kurade MB, Waghmode TR, Jadhav MU, Jeon B, Govindwar SP (2015) Bacterial-yeast consortium as an effective biocatalyst for biodegradation of sulphonated azo dye Reactive Red 198. RSC Adv 5:23046–23056

    CAS  Google Scholar 

  • Leigh MB, Fletcher JS, Fu X, Schmitz FJ (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36:1579–1583

    CAS  Google Scholar 

  • Li Y, Luo J, Yu J, Xia L, Zhou C, Cai L, Ma X (2018) Improvement of the phytoremediation efficiency of Neyraudia reynaudiana for lead-zinc mine-contaminated soil under the interactive effect of earthworms and EDTA. Sci Rep-Uk 8:6417

    Google Scholar 

  • Liang Y, Meggo R, Hu D, Schnoor JL, Mattes TE (2014) Enhanced polychlorinated biphenyl removal in a switchgrass rhizosphere by bioaugmentation with Burkholderia xenovorans LB400. Ecol Eng 71:215–222

    Google Scholar 

  • Liu J, Zhou Q, Wang S (2010a) Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. Int J Phytoremediat 12:503–515

    CAS  Google Scholar 

  • Liu W, Zhou Q, Zhang Y, Wei S (2010b) Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. J Environ Manag 91:781–788

    CAS  Google Scholar 

  • Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresour Technol 224:25–33

    CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    CAS  Google Scholar 

  • McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535

    CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments - an emerging remediation technology. Environ Health Perspect 116:278–283

    CAS  Google Scholar 

  • Mikiya H (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci Plant Nutr 38:141–147

    Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediat 6:119–137

    CAS  Google Scholar 

  • Pulsawat W, Leksawasdi N, Rogers PL, Ljr F (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270

    CAS  Google Scholar 

  • Rascio N, Navariizzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  Google Scholar 

  • Ricken B (1996) Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil. Zeitschrift Fuer Pflanzenernaehrung Und Bodenkunde 159:189–194

    CAS  Google Scholar 

  • Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Leblanc R, Châteauneuf G, Sura C, Gallipeau C, Olsen C, Delisle S, Labrecque M, Greer CW (2005) Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil 272:277–290

    CAS  Google Scholar 

  • Ryan JA, Bell RM, Davidson JM, O'Connor GA (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17:2299–2323

    CAS  Google Scholar 

  • Santana NA, Ferreira PAA, Soriani HH, Brunetto G, Nicoloso FT, Antoniolli ZI, Seminoti Jacques RJ (2015) Interaction between arbuscular mycorrhizal fungi and vermicompost on copper phytoremediation in a sandy soil. Appl Soil Ecol 96:172–182

    Google Scholar 

  • Schnoor JL, Licht LA, Mccutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Schröder P, Navarro-Aviñó J, Azaizeh H, Goldhirsh AG, Digregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res Int 14:490–497

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  Google Scholar 

  • Singh S, Kang SA, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotech 19:437–444

    CAS  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Microbiol Res 9:1265–1277

    Google Scholar 

  • Sun Y, Zhou Q, Xu Y, Wang L, Liang X (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186:2075–2082

    CAS  Google Scholar 

  • Sun Y, Qiu J, Chen D, Ye J, Chen J (2016) Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway. J Hazard Mater 304:543–552

    CAS  Google Scholar 

  • Sun S, Zhou X, Cui X, Liu C, Fan Y, McBride MB, Li Y, Li Z, Zhuang P (2019) Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil. Plant Growth Regul 90(1):29–40

    Google Scholar 

  • Tahir U, Yasmin A, Khan UH (2016) Phytoremediation: potential flora for synthetic dyestuff metabolism. J King Saud Univ Sci 28:119–130

    Google Scholar 

  • Tahir U, Sohail S, Khan UH (2017) Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach. Environ Sci Pollut R 24:22914–22931

    CAS  Google Scholar 

  • Thompson JP (1996) Correction of dual phosphorus and zinc deficiencies of linseed (Linum usitatissimum L.) with cultures of vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 28:941–951

    CAS  Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soil Sediment 1:37–43

    CAS  Google Scholar 

  • Tsai JC, Kumar M, Lin JG (2009) Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164:847–855

    CAS  Google Scholar 

  • Usman ARA, Mohamed HM (2009) Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere 76:893–899

    CAS  Google Scholar 

  • van Aken B, Doty SL (2010) Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds. Biotechnol Genet Eng 26:43–64

    Google Scholar 

  • van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193

    Google Scholar 

  • Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S (2017) Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: an outlook on plant-microbe beneficial interactions. Sci Total Environ 575:1395–1406

    CAS  Google Scholar 

  • Wang X, Zhi J, Liu X, Zhang H, Liu H, Xu J (2018) Transgenic tobacco plants expressing a P1B-ATPase gene from Populus tomentosa Carr. (PtoHMA5) demonstrate improved cadmium transport. Int J Biol Macromol 113:655–661

    CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    CAS  Google Scholar 

  • Xu L, Teng Y, Li Z, Norton JM, Luo Y (2010) Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum. Sci Total Environ 408:1007–1013

    CAS  Google Scholar 

  • Zeng J, Lin X, Zhang J, Li X (2010) Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil. J Hazard Mater 183:718–723

    CAS  Google Scholar 

  • Zhang Z, Rengel Z, Meney K, Pantelic L, Tomanovic R (2011) Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J Hazard Mater 189:119–126

    CAS  Google Scholar 

  • Zhang C, Nie S, Liang J, Zeng G, Wu H, Hua S, Liu J, Yuan Y, Xiao H, Deng L, Xiang H (2016) Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci Total Environ 557–558:785–790

    Google Scholar 

  • Zhao S, Zhao Y, Liang H, Su Y (2019) Formaldehyde removal in the air by six plant systems with or without rhizosphere microorganisms. Int J Phytoremediat 23(13):1296–1304

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Funding

This study was supported by Chongqing Municipality Key Forestry Research Project (No. Yulinkeyan 2016-8), International Sci-Tech Cooperation Project of Ministry of Science and Technology (No. 2015DFA90900) and Forestry Extension Project of China Central Finance (No. Yulinketui 2017-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Editorial responsibility: Jing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, Y., Li, Z. et al. Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. Int. J. Environ. Sci. Technol. 17, 2477–2484 (2020). https://doi.org/10.1007/s13762-020-02668-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02668-2

Keywords

Navigation