Skip to main content

Advertisement

Log in

An ensemble approach for assessment of energy efficiency of agriculture system in Pakistan|

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

An efficient assessment of energy consumption, energy flow, and energy use efficiency in crop (maize) production is inevitable to accomplish the intensive demand for energy. Data Envelopment Analysis (DEA) models based on energy input-output analysis are commonly used for the assessment of energy efficiency. However, standard implication of traditional (CCR) and extended (SBM) models has shortcomings in reporting efficiency score; CCR neglects slacks while SBM caused problems when reporting efficiency over time. To overcome this problem, an ensemble approach that compromised the characteristics of two models (CCR-SBM) is proposed in the current study. Based on the weighted average of the relative efficiencies of two contending models, an ensemble efficiency (EE) score was reported for energy efficiency evaluation of considered DMUs. Preliminary analysis ensued average maize yield of 6874 kg ha−1 with an overall energy input of 42,241.45 MJ ha−1, and net energy gain, energy use efficiency (average), specific energy, and energy productivity, were 58,806 MJ ha−1, 2.39, 6.15 MJ kg−1, and 0.16 kg MJ−1, respectively. Using four major shareholders of input energy (i.e., fertilizer, diesel fuel, irrigation water and chemicals) and, maize yield as output, the projected ensemble approach resulted in an unproductive trend of energy use efficiency in Pakistan with an average ensemble efficiency score of 59.67%, and plausible potential of energy saving from 7181.046 to 33,370.74 MJ ha−1. Furthermore, the ensemble approach showed that EE score could help to significantly reduce the shortcomings of slacks and time fluctuation when reporting efficiency score, compared with using individual models. The proposed approach scrutinized and provided a comprehensive state of the actual situation of energy efficiency in maize production of Pakistan that is important in the context of decision-making. Results of the study suggest resource conservation measures through better agricultural management practices, and production methods and extension activities are required to improve the efficiency of energy consumption in maize production of Pakistan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas, A., Minli, Y., Elahi, E., Yousaf, K., Ahmad, R., & Iqbal, T. (2017a). Quantification of mechanization index and its impact on crop productivity and socioeconomic factors. International Agricultural Engineering Journal., 26(3), 49–54.

    Google Scholar 

  • Abbas, A., Yang, M., Ahmad, R., Yousaf, K., & Iqbal, T. (2017b). Energy use efficiency in wheat production, a case study of Punjab Pakistan. Fresenius Environmental Bulletin, 26, 6773–6779.

    Google Scholar 

  • Alluvione, F., Moretti, B., Sacco, D., & Grignani, C. (2011). EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy, 36(7), 4468–4481.

    Article  Google Scholar 

  • Al-Refaie, A., Hammad, M., & Li, M. (2016). DEA window analysis and Malmquist index to assess energy efficiency and productivity in Jordanian industrial sector. Energy Efficiency, 9(6), 1299–1313.

    Article  Google Scholar 

  • An, Q., Chen, H., Wu, J., & Liang, L. (2015). Measuring slacks-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output. Annals of Operations Research, 235(1), 13–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Aravindakshan, S., Rossi, F., & Krupnik, T. J. (2015). What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis. Energy, 90, 483–493.

    Article  Google Scholar 

  • Asgharipour, R. M., Mousavinik, S. M., & Enayat, F. F. (2016). Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Reports, 2, 135–140.

    Article  Google Scholar 

  • Avkiran, K. N., Tone, K., & Tsutsui, M. (2008). Bridging radial and non-radial measures of efficiency in DEA. Annals of Operations Research, 164, 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Aydin, B., & Aktürk, D. (2018). Energy use efficiency and economic analysis of peach and cherry production regarding good agricultural practices in Turkey: a case study in Çanakkale province. Energy., 158, 967–974.

    Article  Google Scholar 

  • Banaeian, N., & Zangeneh, M. (2011). Study on energy efficiency in corn production of Iran. Energy, 36, 5394–54402.

    Article  Google Scholar 

  • Banaeian, N., Omid, M., & Ahmadi, H. (2012). Greenhouse strawberry production in Iran, efficient or inefficient in energy. Energy Efficiency., 5, 201–209.

    Article  Google Scholar 

  • Baran, F. M., & Gokdogan, O. (2016). Determination of energy balance of sugar beet production in Turkey: a case study of Kırklareli Province. Energy Efficiency, 9, 487–494.

    Article  Google Scholar 

  • Beigi, M., Torki-Harchegani, M., & Ghanbarian, D. (2016). Energy use efficiency and economical analysis of almond production: a case study in Chaharmahal-Va-Bakhtiari province, Iran. Energy Efficiency, 9, 745–754.

    Article  Google Scholar 

  • Bilalis, D., Kamariari, P. E., Karkanis, A., Efthimiadou, A., Zorpas, A., & Kakabouki, L. (2013). Energy inputs, output and productivity in organic and conventional maize and tomato production, under Mediterranean conditions. Not Bot Horti Agrobo, 41(1), 1–5.

    Article  Google Scholar 

  • Borders, M., & Burnett, H. S. (2006). Farm subsidies: devastating the world’s poor and the environment. Dallas: National Centre for Policy Analysis.

    Google Scholar 

  • Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: case study for Antalya region, Turkey. Energy Conversion and Management, 46, 655–666.

    Article  Google Scholar 

  • Chang, Y. T., Zhang, N., Danao, D., & Zhang, N. (2013). Environmental efficiency analysis of transportation system in China: a non-radial DEA approach. Energy Policy, 58, 277–283.

    Article  Google Scholar 

  • Chang, Y. T., Park, H. S., Jeong, J. B., & Lee, J. W. (2014). Evaluating economic and environmental efficiency of global airlines: A SBM-DEA approach. Transportation Research Part D. Transport and Environment, 27, 46–50.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Gao, Y., An, Q., Wang, Z., & Neralic, L. (2018). Energy efficiency measurement of Chinese Yangtze River Delta’s cities transportation: a DEA window analysis approach. Energy Efficiency, 1–13.

  • Cheng, Y., Lv, K., Wang, J., & Xu, H. (2018). Energy efficiency, carbon dioxide emission efficiency, and related abatement costs in regional China: a synthesis of input–output analysis and DEA. Energy Efficiency.,12, 863877. https://doi.org/10.1007/s12053-018-9695-8.

    Article  Google Scholar 

  • Chilur, R., & Yadachi, S. (2017). Energy audit of maize production system of selected villages of North Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 6(8), 3564–3571.

    Article  Google Scholar 

  • Cooper, M., Seiford, M. L. & Tone, K. (2006). Data envelopment analysis: a comprehensive text with models, applications, references and DEA- solver software. 2nd edition Berlin.

  • Cotton Economics Research Institute. (2007). Guide to foreign crop subsidies and tariffs. Lubbock: Cotton Economics Research Institute, Texas Tech University.

    Google Scholar 

  • Deike, S., Pallutt, B., & Christen, O. (2008). Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. European Journal of Agronomy, 28(3), 461–470.

    Article  Google Scholar 

  • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning, 40, 139–157.

    Article  Google Scholar 

  • Du, H., Matisoff, D. C., Wang, Y., & Liu, X. (2016). Understanding drivers of energy efficiency changes in China. Applied Energy, 184, 1196–1206.

    Article  Google Scholar 

  • Elahi, E., Abid, A., Zhang, L., Haq, S. U., & Sahito, J. G. M. (2018). Agricultural advisory and financial services; farm level access, outreach and impact in a mixed cropping district of Punjab, Pakistan. Land Use Policy, 71, 249–260.

    Article  Google Scholar 

  • Elhami, B., Akram, A., & Khanali, M. (2016). Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Information Processing in Agriculture, 3, 190–225.

    Article  Google Scholar 

  • Ennen, D., & Batool, I. (2018). Airport efficiency in Pakistan - a data envelopment analysis with weight restrictions. Journal of Air Transport Management, 69, 205–212.

    Article  Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253–290.

    Article  Google Scholar 

  • Fazlollahi, A., & Franke, U. (2018). Measuring the impact of enterprise integration on firm performance using data envelopment analysis. International Journal of Production Economics, 2000, 119–129.

    Article  Google Scholar 

  • Government of Pakistan (GOP). (2016). Pakistan economic survey 2015–16. Economic Advisor’s Wing, Finance Division, Islamabad, Pakistan.

  • Guzmán, G. I., & Alonso, A. M. (2008). A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems, 98, 167–176.

    Article  Google Scholar 

  • Hoffman, E., Cavigelli, M. A., Camargo, G., Ryan, M., Ackroyd, V. J., Richard, T. L., & Mirsky, S. (2018). Energy use and greenhouse gas emissions in organic and conventional grain crop production: accounting for nutrient inflows. Agricultural Systems, 162, 89–96.

    Article  Google Scholar 

  • Houshyar, E., Azadi, H., Almassi, M., Davoodi, M. J. S., & Witlox, F. (2012). Sustainable and efficient energy consumption of corn production in Southwest Iran: combination of multi-fuzzy and DEA modeling. Energy, 44, 672–681.

    Article  Google Scholar 

  • José, M. T., Diaz, J. A. R., Abadíac, R., Camacho, E., Rocamorac, C., & Moreno, M. A. (2015). Efficient water and energy use in irrigation modernization: lessons from Spanish case studies. Agricultural Water Management, 162, 67–77.

    Article  Google Scholar 

  • Joy, E. J. M., Ahmad, W., Zia, M. H., Kumssa, D. B., Young, S. D., Ander, E. L., Watts, M. J., Stein, A. J., & Broadley, M. R. (2017). Valuing increased zinc (Zn) fertiliser-use in Pakistan. Plant and Soil, 411, 139–150.

    Article  Google Scholar 

  • Kazemi, H., Shahbyki, M., & Baghbani, S. (2015). Energy analysis for Faba bean production: a case study in Golestan Province, Iran. Sustainable Production and Consumption, 3, 15–20.

    Article  Google Scholar 

  • Kazemi, H., Shokrgozar, M., Kamkar, B., & Soltani, A. (2018). Analysis of cotton production by energy indicators in two different climatic regions. Journal of Cleaner Production, 190, 729–736.

    Article  Google Scholar 

  • Ke, T. S. (2017). Energy efficiency of APEC members applied dynamic SBM model. Carbon Management, 8(4), 293–303.

    Article  MathSciNet  Google Scholar 

  • Khoshroo, A., Mulwa, R., Emrouznejad, A., & Arabi, B. (2013). A non-parametric data envelopment analysis approach for improving energy efficiency of grape production. Energy, 63, 189–194.

    Article  Google Scholar 

  • Khoshroo, A., Izadikhah, M., & Emrouznejad, A. (2018). Improving energy efficiency considering reduction of CO2 emission of turnip production: a novel data envelopment analysis model with undesirable output approach. Journal of Cleaner Production, 187, 605–615.

    Article  Google Scholar 

  • Klimekova, K., & Lehocka, Z. (2007). Comparison of organic and conventional farming system in term of energy efficiency. Paper at: Zwischen tradition und Globalisierung - 9. Wissenschaftstagung Ökologischer Landbau, Universität Hohenheim, Stuttgart, Deutschland.

  • Kokten, K., Kaplan, M., Gokdogan, O., & Barab, M. F. (2018). Determination of energy use efficiency of maize (zea mays intendata) production in Turkey. Fresenius Environmental Bulletin, 27(4), 1973–1978.

    Google Scholar 

  • Lal, B., Panda, B. B., Gautam, P., Raja, R., Singh, T., Mohanty, S., Shahid, M., Tripathi, R., Kumar, A., & Nayak, A. K. (2015). Input–output energy analysis of rain fed rice-based cropping systems in Eastern India. Agronomy Journal, 107, 1750–1756.

    Article  Google Scholar 

  • Li, M. J., & Tao, W.-Q. (2017). Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry. Applied Energy, 187, 203–215.

    Article  Google Scholar 

  • Li, Y., Lei, X., Dai, Q., & Liang, L. (2015). Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis. European Journal of Operational Research, 243(3), 964–973.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., & Tone, K. (2008). A multistage method to measure efficiency and its application to Japanese banking industry. Socio-Economic Planning Sciences, 42, 75–91.

    Article  Google Scholar 

  • Mandal, S. K., & Madheswaran, S. (2018). Energy use efficiency of Indian cement companies: a data envelopment analysis. Energy Efficiency, 4, 57–73.

    Article  Google Scholar 

  • Masuda, K. (2018). Energy efficiency of intensive rice production in Japan: an application of data envelopment analysis. Sustainability, 10(1), 120–130.

    Article  Google Scholar 

  • Mathur, K. (2018). Efficiency in food grains production in India using DEA and SFA. Central European Review of Economics and Management, 2(1), 79–101.

    Article  Google Scholar 

  • Mohammadi, A., Rafiee, S., Mohtasebi, S. S., Mousavi-Avval, S. H., & Rafiee, H. (2011). Energy efficiency improvement and input cost saving in kiwifruit production using data envelopment analysis approach. Renewable Energy, 36(9), 2573–2579.

    Article  Google Scholar 

  • Mohammadi-Barsari, A., Firouzi, S., & Aminpanah, H. (2016). Energy-use pattern and carbon footprint of rain-fed watermelon production in Iran. Information Processing in Agriculture, 3, 69–75.

    Article  Google Scholar 

  • Morita, H., Hirokawa, K., & Zhu, J. (2005). A slack-based measure of efficiency in context-dependent data envelopment analysis. Omega, 33, 357–362.

    Article  Google Scholar 

  • Mrini, M., Senhaji, F., & Pimentel, D. (2001). Energy analysis of sugarcane production in Morocco. Environment, Development and Sustainability, 3, 109–126.

    Article  Google Scholar 

  • Muazu, A., Yahya, A., Ishak, W. I. W., & Khairunniza-Bejo, S. (2015). Energy audit for sustainable wetland paddy cultivation in Malaysia. Energy, 87, 182–191.

    Article  Google Scholar 

  • Nasseri, A. (2019). Energy use and economic analysis for wheat production by conservation tillage along with sprinkler irrigation. Science of the Total Environment, 648, 450–459.

    Article  Google Scholar 

  • Nassiri, M. S., & Singh, S. (2009). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Applied Energy, 86, 1320–1325.

    Article  Google Scholar 

  • Navarro, D. M., Iocola, I., Persiani, A., Blanco, J. M. M., Lakkenborg, H. K., Hefner, M., Tamm, K., Bender, I., Védie, H., Willekens, K., Diacono, M., Montemurro, F., Sans, F. X., & Canali, S. (2019). Energy flows in European organic vegetable systems: effects of the introduction and management of agroecological service crops. Energy, 188, 116096.

    Article  Google Scholar 

  • Pimentel, D. D. (2009). Energy inputs in food crop production in developing and developed nations. Energies, 2, 1–24.

    Article  Google Scholar 

  • Pokhrel, & Soni. (2017). Performance analysis of different rice-based cropping systems in tropical region of Nepal. Journal of Environmental Management, 197, 70–79.

    Article  Google Scholar 

  • Prabhakar, S. V. R. K., & Elder, M. (2009). Biofuels and resource use efficiency in developing Asia: back to basics. Applied Energy, 86, S30–S36.

    Article  Google Scholar 

  • Raheli, H., Rezaei, R. M., Jadidi, M. R., & Mobtaker, H. G. (2017). A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Information Processing in Agriculture, 4(4), 342–350.

    Article  Google Scholar 

  • Rahman, S., & Barmon, B. (2015). Exploring the potential to improve energy saving and energy efficiency using fertilizer deep placement strategy in modern rice production in Bangladesh. Energy Efficiency., 8, 1241–1250.

    Article  Google Scholar 

  • Rahman, S., & Rahman, M. S. (2013). Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: an empirical analysis from Bangladesh. Energy, 49, 329–336.

    Article  Google Scholar 

  • Rehman, A., Jingdong, L., Shahzad, B., Chandio, A. A., Hussain, I., Nabi, G., & Iqbal, S. M. (2015). Economic perspectives of major field crops of Pakistan. Pacific Science Review B: Humanities and Social Sciences, 1(3), 145–158.

    Google Scholar 

  • Schaar, D., & Sherry, L. (2008). Comparison of data envelopment analysis methods used in airport benchmarking. In Proceedings 3rd international conference on research and air transportation. Fairfax: George Mason University.

    Google Scholar 

  • Singh, J. M. (2002). On farm energy use pattern in different cropping systems in Haryana, India. International Institute of Management University of Flensburg, Sustainable Energy Systems and Management. Master of Science, Germany.

  • Soni, P., & Soe, M. N. (2016). Energy balance and energy economic analyses of rice production systems in Ayeyarwaddy region of Myanmar. Energy Efficiency., 9, 223–237.

    Article  Google Scholar 

  • Taghavifar, H., & Mardani, A. (2015). Energy consumption analysis of wheat production in west Azarbayjan utilizing life cycle assessment (LCA). Renewable Energy, 74, 208–213.

    Article  Google Scholar 

  • Tone, K. (2001). A slack-based measure of efficiency in data envelopment analysis. European Journal of Operation Research, 130, 498–509.

    Article  MathSciNet  MATH  Google Scholar 

  • Tone, K. (2004). Dealing with undesirable outputs in DEA: a slacks-based measure (SBM) approach (pp. 44–45). Toronto: Presentation at NAPW III.

    Google Scholar 

  • Tone, K., & Tsutsui, M. (2010). Dynamic DEA: a slacks-based measure approach. Omega, 38(3), 145–156.

    Article  MATH  Google Scholar 

  • Vina, A. L., Fransen, L., Faeth, P., & Kurauchi, Y. (2007). Agricultural subsidies, poverty and the environment: supporting a domestic reform agenda in developing countries. WRI Policy Note, 6, 1–4.

    Google Scholar 

  • Wang, G., Lin, N., Zhou, X., Li, Z., & Deng, X. (2018). Three-stage data envelopment analysis of agricultural water use efficiency: a case study of the Heihe river basin. Sustainability, 10(2), 568–583.

    Article  Google Scholar 

  • Wu, J., Chu, J., Sun, J., & Zhu, Q. (2016a). DEA cross-efficiency evaluation based on Pareto improvement. European Journal of Operational Research, 248(2), 571–579.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, J., Chu, J., Sun, J., Zhu, Q., & Liang, L. (2016b). Extended secondary goal models for weights selection in DEA cross-efficiency evaluation. Computers & Industrial Engineering, 93, 143–151.

    Article  Google Scholar 

  • Wu, J., Chu, J., Zhu, Q., Yin, P., & Liang, L. (2016c). DEA cross-efficiency evaluation based on satisfaction degree: An application to technology selection. International Journal of Production Research, 54(20), 5990–6007.

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of PhD dissertation. We are thankful to China Scholarship council (CSC) for providing PhD scholarship funding.

Funding

This study was funded by CSC, reference number 2014GXZA87.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Abbas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A., Waseem, M. & Yang, M. An ensemble approach for assessment of energy efficiency of agriculture system in Pakistan|. Energy Efficiency 13, 683–696 (2020). https://doi.org/10.1007/s12053-020-09845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-020-09845-9

Keywords

Navigation