Skip to main content
Log in

Two gustatory receptors are necessary for sensing sucrose in an egg parasitoid, Trichogramma chilonis

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

The gustatory system plays vital roles in food selection and feeding behaviours, as well as in other life activities in insects. In the process of taste perception, the functions of gustatory receptors are extremely important for insects. Trichogramma chilonis, a species of egg parasitoid, is often used as an effective biocontrol agent for agricultural and forestry pests. The utilization of T. chilonis has been well established, but the gustatory receptors, constituting the key factor in the molecular mechanism of gustation, are still unknown. In this study, we obtained two full-length cDNAs encoding putative sugar receptors (TchiGR64f1 and TchiGR64f2), and the qRT-PCR results showed that TchiGR64f1 and TchiGR64f2 were expressed from the larval to adult stages. The expression of TchiGR64f1 and TchiGR64f2 differed between male and female adults. Functional analysis of TchiGR64f1 and TchiGR64f2 was conducted based on the Xenopus oocyte expression system and the two-electrode voltage-clamp system. The electrophysiological results showed that the combination of TchiGR64f1 + TchiGR64f2 was exclusively tuned to sucrose. Then, T. chilonis adults showed a preference for sucrose in a behavioural experiment. Additionally, sucrose consumption prolonged the lifespan and improved the fecundity of T. chilonis. These results not only enrich the reservoir of information on gustatory receptors in T. chilonis but also provide basic knowledge for further research on taste reception and for the development of a better strategy for the application of T. chilonis in biocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Sidén-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    PubMed  Google Scholar 

  • Amrein H, Thorne N (2005) Gustatory perception and behavior in Drosophila melanogaster. Curr Biol 15:673–684

    Google Scholar 

  • Anderson AR, Wanner KW, Trowell SC, Warr CG, Jaquin-Joly E, Zagatti P, Robertson H, Newcomb RD (2009) Molecular basis of female-specific odorant responses in Bombyx mori. Insect Biochem Mol Biol 39:189–197

    CAS  PubMed  Google Scholar 

  • Baker HG (1975) Sugar concentrations in nectars from hummingbird flowers. Biotropica 7:37–41

    Google Scholar 

  • Byers JA (1995) Host tree chemistry affecting colonization in bark beetles. In: Card RT, Bell WJ (eds) Chemical ecology of insects. Academic Press, New York, pp 154–213

    Google Scholar 

  • Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park S, Pfeiffer BD, Richards S, Sodergren EJ, Svirskas R, Tabor PE, Wan K, Stapleton M, Sutton GG, Venter C, Weinstock G, Scherer SE, Myers EW, Gibbs RA, Rubin GM (2002) Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol 3(12):RESEARCH0079

    PubMed  PubMed Central  Google Scholar 

  • Chen LL, Lin CM, Xie YL, Qin BR, Wang HS (2016) Experiment on rice leaf folder control by releasing Tirchogramma Chilonis. J Guangxi Agric. https://doi.org/10.3969/jissn1003-4374201604005

    Article  Google Scholar 

  • Chyb S, Dahanukar A, Wickens A, Carlson JR (2003) Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci USA 2(24):14526–14530

    Google Scholar 

  • Crosby MA, Sian Gramates L, dos Santos G, Matthews BB, St. Pierre SE, Zhou PL, Schroeder AJ, Falls K, Emmert DB, Russo SM, Gelbart WM, the FlyBase Consortium (2015) Gene model annotations for Drosophila melanogaster: the rule-benders. G3 (Bethesda) 5(8):1737–1749

    CAS  Google Scholar 

  • Dadmal SM, Pujari AJ, Satpute NS (2010) Influence of short term exposure to different temperatures on key biological parameters of Trichogramma chilonis Ishii under laboratory conditions. J Biol Control 24(1):8–12

    Google Scholar 

  • Dahanukar A, Foster K, Carlson JR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4(12):1182–1186

    CAS  PubMed  Google Scholar 

  • Dahanukar A, Lei YT, Kwon JY, Carlson JR (2007) Two Gr genes underlie sugar reception in Drosophila. Neuron. 56:503–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobritsa AA, van Naters WVDG, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37(5):827–841

    CAS  PubMed  Google Scholar 

  • Eichmüller S, Schäfer S (2010) Sensory neuron development revealed by taurine immunocytochemistry in the honeybee. J Comp Neurol 352(2):297–307

    Google Scholar 

  • Fatima B, Ashraf M, Ahmad N, Suleman N (2002) Mass production of Trichogramma chilonis: an economical and advanced technique. In: The BCPC conference: pests and diseases, volumes 1 and 2 proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, pp. 18–21 November

  • Freeman EG, Wisotsky Z, Dahanukar A (2014) Detection of sweet tastants by a conserved group of insect gustatory receptors. Proc Natl Acad Sci U S A 111(4):1598–1603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gendre N, Lüer K, Friche S, Grillenzoni N, Ramaekers A, Technau GM, Stocker RF (2004) Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Development 131(1):83–92

    CAS  PubMed  Google Scholar 

  • Grosse-wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS (2011) Antennal transcriptome of Manduca sexta Proc Natl Acad Sci USA 108(18):7449–7454

    CAS  PubMed  Google Scholar 

  • Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) G proten-coupled receptors in Anopheles gambiae. Science 298(5591):176–178

    CAS  PubMed  Google Scholar 

  • Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, Kaminker JS, Kennedy C, Mungall CJ, Sullivan BA, Sutton GG, Yasuhara JC, Wakimoto BT, Myers EW, Celniker SE, Rubin GM, Karpen GH (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 3(12):RESEARCH0085

    PubMed  PubMed Central  Google Scholar 

  • Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S, Mendez-Lago M, Rossi F, Villasante A, Dimitri P, Karpen GH, Celniker SE (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316(5831):1625–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YC, Yi DW, Song ZW, Li DS, Zhang GR (2016) The individual development of Trichogramma chilonis on Corcyra cephalonica eggs. J Env Ent 38(3):457–462

    Google Scholar 

  • Irvin NA, Hoddle MS (2007) Evaluation of floral resources for enhancement of fitness of Gonatocerus ashmeadi, an egg parasitoid of the glassy-winged sharpshooter, Homalodisca vitripennis. Biol Control 40(1):1–88

    Google Scholar 

  • Jiang XJ, Ning C, Guo H, Jia YY, Huang LQ, Qu MJ, Wang CZ (2015) A Gustatory Receptor Tuned to d-fructose in Antennal Sensilla chaetica of Helicoverpa armigera. Insect Biochem Mol Biol 60:39–46

    CAS  PubMed  Google Scholar 

  • Jiao Y, Moon SJ, Montell C (2007) A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci USA 104(35):14110–14115

    CAS  PubMed  Google Scholar 

  • Jiao Y, Moon SJ, Wang X, Ren Q, Montell C (2008) Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol 18:1797–1801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JW, Park KW, Ahn YJ, Kwon HW (2015) Functional characterization of sugar receptors in the western honeybee, Apis mellifer.a. J Asia-Pac Entomol 18(1):19–26

    CAS  Google Scholar 

  • Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Pate S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3(12):RESEARCH0084

    PubMed  PubMed Central  Google Scholar 

  • Kazuki M, Masahiro K (1998) Effects of host-egg age on the parasitism by Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae), an egg parasitoid of the diamondback moth. Appl Entomol Zool 33(2):219–222

    Google Scholar 

  • Lakes R, Pollack GS (1990) The development of the sensory organs of the legs in the blowfly, Phormia regina. Cell Tissue Res 259(1):93

    CAS  PubMed  Google Scholar 

  • Leatemia JA, Laing JE, Corrigan JE (1995) Production of exclusively male progeny by mated, honey-fed Trichogramma minuturn Riley (Hym, Trichogrammatidae). J Appl Entomol 119(1–5):561–566

    Google Scholar 

  • Lee Y, Moon SJ, Montell C (2009) Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci USA 106:4495–4500

    CAS  PubMed  Google Scholar 

  • Lee Y, Kang MJ, Shim J, Cheong CU, Moon SJ, Montell C (2012) Gustatory receptors required for avoiding the insecticide L-canavanine. J Neurosci 32:1429–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Moon SJ, Wang Y, Montell C (2015) A Drosophila gustatory receptor required for strychnine sensation. Chem Senses 40:525–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine RB, Morton DB, Restifo LL (1995) Remodeling of the insect nervous system. Curr Opin Neurobiol 5:28–35

    CAS  PubMed  Google Scholar 

  • Liu JB, Wu H, Yi JQ, Song ZW, Li DS, Zhang GR (2018) Transcriptome characterization and gene expression analysis related to chemoreception in Trichogramma chilonis, an egg parasitoid. Gene 678:288–301

    CAS  PubMed  Google Scholar 

  • Liu JB, Wu H, Yi JQ, Zhang GR (2019) Identification and functional characterization of d-fructose receptor in an egg parasitoid, Trichogramma chilonis. PLoS ONE 14(6):e0217493. https://doi.org/10.1371/journal.pone.0217493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔct, method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Luo SP, Li JC, Liu XX, Lu ZY, Pan WL, Zhang QW, Zhao ZW (2010) Effects of six sugars on the longevity, fecundity and nutrient reserves of Microplitis mediator. Biol Control 52(1):51–57

    CAS  Google Scholar 

  • Matthews BB, dos Santos G, Crosby MA, Emmert DB, Pierre SE, Sian Gramates L, Zhou PL, Schroeder AJ, Falls K, Strelets V, Russo SM, Gelbart WM, the FlyBase Consortium (2015) Gene model annotations for Drosophila melanogaster: impact of high-throughput data. G3 (Bethesda) 5(8):1721–1736

    CAS  Google Scholar 

  • Meunier N, Marion-Poll F, Rospars JP, Tanimura T (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56:139–152

    PubMed  Google Scholar 

  • Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfield EJ, Bayraktaroglu L, Berman BP, Bettencourt BR, Celniker SE, de Grey ADNJ, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol 3(12):RESEARCH0083

    PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Amrein H (2014) Diverse roles for the Drosophila fructose sensor Gr43a. Fly 8(1):19–25

    PubMed  Google Scholar 

  • Miyamoto T, Slone J, Song X, Amrein HA (2012) fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151:1113–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Chen Y, Slone J, Amrein H (2013) Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons. PLoS ONE 8(2):e56304–e56325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montell CA (2009) taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19:345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poudel S, Lee Y (2016) Gustatory receptors required for avoiding the toxic compound coumarin in Drosophila melanogaster. Mol Cells 39:310

    PubMed  PubMed Central  Google Scholar 

  • Poudel S, Kim Y, Kim YT, Lee Y (2015) Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster. Insect Biochem Mol Biol 66:110–118

    CAS  PubMed  Google Scholar 

  • Poudel S, Kim Y, Kwak J, Jeong S, Lee Y (2017) Gustatory receptor 22e is essential for sensing chloroquine and strychnine in Drosophila melanogaster. Insect Biochem Mol Biol 88:30–36

    CAS  PubMed  Google Scholar 

  • Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, Anxolabehere D (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1(2):166–175

    CAS  PubMed  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100(Suppl 2):14537–14542

    CAS  PubMed  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silk moth Bombyx mori. Proc Natl Acad Sci USA 101:16653–16658

    CAS  PubMed  Google Scholar 

  • Sato K, Tanaka K, Touhara K (2011) Sugar-regulated cation channel formed by an insect gustatory receptor Proc Natl Acad Sci USA 108:11680–11685

    CAS  PubMed  Google Scholar 

  • Schneider D (1964) Insect antennae. Annu Rev Entomol 9:103–122

    Google Scholar 

  • Scott K, Brady R Jr, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104(5):661–673

    CAS  PubMed  Google Scholar 

  • Seada MA (2015) Antennal morphology and sensillum distribution of female cotton leaf worm Spodoptera littoralis, (lepidoptera: noctuidae). J Basic Appl Zool 68:10–18

    Google Scholar 

  • Shi ZS, Chen HS, Qin ZQ, Guo Q, Bi DJ, Jiang QM, Huang ZL, Tang LQ, Peng C, Ma WQ, Qin CX, Zhang XF, He HL, Wei JJ, Shi AX (2018) Population dynamics of borers and its control effect evaluation by using Trichogramma chilonis Ishii in Chongzuo Cane Area. Chin J Biol Control 34(5):656–662. https://doi.org/10.16409/jcnki2095-039x201805002

    Article  Google Scholar 

  • Shields VDC, Hildebrand JG (2001) Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc Res Tech 55(5):307–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shim J, Lee Y, Jeong YT, Kim Y, Lee MG, Montell C, Moon SJ (2015) The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat Commun 6:8867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slone J, Daniels J, Amrein H (2007) Sugar receptors in Drosophila. Curr Biol 17(20):1809–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780

    CAS  PubMed  Google Scholar 

  • Smith CD, Shu SQ, Mungall CJ, Karpen GH (2007) The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 316(5831):1586–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, Croset V, Currie CR, Elhaik E, Elsik CG, Fave MJ, Fernandes V, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Helmkampf M, Holley JA, Hu H, Viniegra AS, Johnson BR, Johnson RM, Khila A, Kim JW, Laird J, Mathis KA, Moeller JA, Munoz-Torres MC, Murphy MC, Nakamura R, Nigam S, Overson RP, Placek JE, Rajakumar R, Reese JT, Robertson HM, Smith CR, Suarez AV, Suen G, Suhr EL, Tao S, Torres CW, van Wilgenburg E, Viljakainen L, Walden KK, Wild AL, Yandell M, Yorke JA, Tsutsui ND (2011) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci USA 108(14):5673–5678

    CAS  PubMed  Google Scholar 

  • Stapel JO, Cortesero AM, Moraes CMD, Tumlinson JH, Lewis WJ (1997) Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environ Entomol 26(3):617–623

    Google Scholar 

  • Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26

    CAS  PubMed  Google Scholar 

  • Sung HY, Jeong YT, Lim JY, Kim H, Oh SM, Hwang SW, Kwon JY, Moon SJ (2017) Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nat Commun 8(1):15. https://doi.org/10.1038/s41467-017-01639-5

    Article  CAS  Google Scholar 

  • Thorne N, Chromey C, Bray S, Amrein H (2004) Taste perception and coding in Drosophila. Curr Biol 14:1065–1079

    CAS  PubMed  Google Scholar 

  • Tian JC, Wang GW, Romeis J, Zheng XS, Xu HX, Zang LS, Lu ZX (2016) Different Performance of Two Trichogramma (Hymenoptera: Trichogrammatidae) Species Feeding on Sugars. Environ Entomol 45(5):1316–1321

    CAS  PubMed  Google Scholar 

  • Tissot M, Stocker RF (2000) Metamorphosis in Drosophila and other insects: the fate of neurons throughout the stages. Prog Neurobiol 62:89–111

    CAS  PubMed  Google Scholar 

  • Truman JW (1996) Metamorphosis of the insect nervous system. In: Gilbert LI, Tata JR, Atkinson BG (eds) Metamorphosis: postembryonic reprogramming of gene expression in amphibian and insect cells. Academic Press, San Diego, pp 283–320

    Google Scholar 

  • Ueno K, Ohta M, Morita H, Mikuni Y, Nakajima S, Yamamoto K, Isono K (2001) Trehalose sensitivity in drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol 11(18):1451–1455

    CAS  PubMed  Google Scholar 

  • Wäckers FL (1999) Gustatory response by the hymenopteran parasitoid Cotesia glomeratato a range of nectar and honeydew sugars. J Chem Ecol 25(12):2863–2877

    Google Scholar 

  • Wäckers FL (2001) A comparison of nectar and honeydew sugars with respect to their utilization by the Hymenopteran parasitoid Cotesia glomerate. J Insect Physiol 47:1077–1084

    PubMed  Google Scholar 

  • Wallberg A, Bunikis I, Pettersson OV, Mosbech MB, Childers AK, Evans JD, Mikheyev AS, Robertson HM, Robinson GE, Webster MT (2019) A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genom 20(1):275

    Google Scholar 

  • Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117:981–991

    CAS  PubMed  Google Scholar 

  • Wanner KW, Robertson HM (2008) The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol Biol 17(6):621–629

    CAS  PubMed  Google Scholar 

  • Weinstock GM, Robinson GE, Gibbs RA, Weinstock GM, Robinson GE, Worley KC, Evans JD, Maleszka R, Robertson HM, Weaver DB, Beye M, Bork P, Elsik CG, Evans JD, Hartfelder K, Hunt GJ, Robertson HM, Robinson GE, Maleszka R, Weinstock GM, Worley KC, Zdobnov EM, Hartfelder K, Amdam GV, Bitondi MM, Collins AM, Cristino AS, Evans JD, Lattorff MG, Lobo CH, Moritz RF, Nunes FM, Page RE Jr, Simões ZL, Wheeler D, Carninci P, Fukuda S, Hayashizaki Y, Kai C, Kawai J, Sakazume N, Sasaki D, Tagami M, Maleszka R, Amdam GV, Albert S, Baggerman G, Beggs KT, Bloch G, Cazzamali G, Cohen M, Drapeau MD, Eisenhardt D, Emore C, Ewing MA, Fahrbach SE, Forêt S, Grimmelikhuijzen CJ, Hauser F, Hummon AB, Hunt GJ, Huybrechts J, Jones AK, Kadowaki T, Kaplan N, Kucharski R, Leboulle G, Linial M, Littleton JT, Mercer AR, Page RE Jr, Robertson HM, Robinson GE, Richmond TA, Rodriguez-Zas SL, Rubin EB, Sattelle DB, Schlipalius D, Schoofs L, Shemesh Y, Sweedler JV, Velarde R, Verleyen P, Vierstraete E, Williamson MR, Beye M, Ament SA, Brown SJ, Corona M, Dearden PK, Dunn WA, Elekonich MM, Elsik CG, Forêt S, Fujiyuki T, Gattermeier E, Gempe T, Hasselmann M, Kadowaki T, Kage E, Kamikouchi A, Kubo T, Kucharski R, Kunieda T, Lorenzen M, Maleszka R, Milshina NV, Morioka M, Ohashi K, Overbeek R, Page RE Jr, Robertson HM, Robinson GE, Ross CA, Schioett M, Shippy T, Takeuchi H, Toth AL, Willis JH, Wilson MJ, Robertson HM, Zdobnov EM, Bork P, Elsik CG, Gordon KH, Letunic I, Hackett K, Peterson J, Felsenfeld A, Guyer M, Solignac M, Agarwala R, Cornuet JM, Elsik CG, Emore C, Hunt GJ, Monnerot M, Mougel F, Reese JT, Schlipalius D, Vautrin D, Weaver DB, Gillespie JJ, Cannone JJ, Gutell RR, Johnston JS, Elsik CG, Cazzamali G, Eisen MB, Grimmelikhuijzen CJ, Hauser F, Hummon AB, Iyer VN, Iyer V, Kosarev P, Mackey AJ, Maleszka R, Reese JT, Richmond TA, Robertson HM, Solovyev V, Souvorov A, Sweedler JV, Weinstock GM, Willliamson MR, Zdobnov EM, Evans JD, Aronstein KA, Bilikova K, Chen YP, Clark AG, Decanini LI, Gelbart WM, Hetru C, Hultmark D, Imler JL, Jiang H, Kanost M, Kimura K, Lazzaro BP, Lopez DL, Simuth J, Thompson GJ, Zou Z, De Jong P, Sodergren E, Csûrös M, Milosavljevic A, Johnston JS, Osoegawa K, Richards S, Shu CL, Weinstock GM, Elsik CG, Duret L, Elhaik E, Graur D, Reese JT, Robertson HM, Robertson HM, Elsik CG, Maleszka R, Weaver DB, Amdam GV, Anzola JM, Campbell KS, Childs KL, Collinge D, Crosby MA, Dickens CM, Elsik CG, Gordon KH, Grametes LS, Grozinger CM, Jones PL, Jorda M, Ling X, Matthews BB, Miller J, Milshina NV, Mizzen C, Peinado MA, Reese JT, Reid JG, Robertson HM, Robinson GE, Russo SM, Schroeder AJ, St Pierre SE, Wang Y, Zhou P, Robertson HM, Agarwala R, Elsik CG, Milshina NV, Reese JT, Weaver DB, Worley KC, Childs KL, Dickens CM, Elsik CG, Gelbart WM, Jiang H, Kitts P, Milshina NV, Reese JT, Ruef B, Russo SM, Venkatraman A, Weinstock GM, Zhang L, Zhou P, Johnston JS, Aquino-Perez G, Cornuet JM, Monnerot M, Solignac M, Vautrin D, Whitfield CW, Behura S, Berlocher SH, Clark AG, Gibbs RA, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Tsutsui ND, Weaver DB, Wei X, Wheeler D, Weinstock GM, Worley KC, Havlak P, Li B, Liu Y, Sodergren E, Zhang L, Beye M, Hasselmann M, Jolivet A, Lee S, Nazareth LV, Pu LL, Thorn R, Weinstock GM, Stolc V, Robinson GE, Maleszka R, Newman T, Samanta M, Tongprasit WA, Aronstein KA, Claudianos C, Berenbaum MR, Biswas S, de Graaf DC, Feyereisen R, Johnson RM, Oakeshott JG, Ranson H, Schuler MA, Muzny D, Gibbs RA, Weinstock GM, Chacko J, Davis C, Dinh H, Gill R, Hernandez J, Hines S, Hume J, Jackson L, Kovar C, Lewis L, Miner G, Morgan M, Nazareth LV, Nguyen N, Okwuonu G, Paul H, Richards S, Santibanez J, Savery G, Sodergren E, Svatek A, Villasana D, Wright R (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443(7114):931–949

    CAS  Google Scholar 

  • Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69(2):258–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler K, Wäckers FL, Stingli A, Jcvan L (2010) Plutella xylostella (diamondback moth) and its parasitoid Diadegma semiclausum show different gustatory and longevity responses to a range of nectar and honeydew sugars. Entomol Exp Appl 115:187–192

    Google Scholar 

  • Wolcott GN (1942) The requirements of parasites for more than hosts. Science 96(2492):317–318. https://doi.org/10.1126/science962492317

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Wang J, Zhou Z, Li R, Fan W, Cheng D, Cheng T, Qin J, Duana J, Xu H, Li Q, Li N, Wang M, Dai F, Liu C, Lin Y, Zhao P, Zhang H, Liu S, Zha X, Li C, Zhao A, Pan M, Pan G, Shen Y, Gao Z, Wang Z, Wang G, Wu Z, Hou Y, Chai C, Yu Q, He N, Zhang Z, Li S, Yang H, Lu C, Wang J, Xiang Z, Mita K, Kasahara M, Nakatani Y, Yamamoto K, Abe H, Ahsan B, Daimoni T, Doi K, Fujii T, Fujiwara H, Fujiyama A, Futahashi R, Hashimotol S, Ishibashi J, Iwami M, Kadono-Okuda K, Kanamori H, Kataoka H, Katsuma S, Kawaoka S, Kawasaki H, Kohara Y, Kozaki T, Kuroshu RM, Kuwazaki S, Matsushima K, Minami H, Nagayasu Y, Nakagawa T, Narukawa J, Nohata J, Ohishi K, Ono Y, Osanai-Futahashi M, Ozaki K, Qu W, Roller L, Sasaki S, Sasaki T, Seino A, Shimomura M, Shin-I T, Shinoda T, Shiotsuki T, Suetsugu Y, Sugano S, Suwa M, Suzuki Y, Takiya S, Tamura T, Tanaka H, Tanaka Y, Touhara K, Yamada T, Yamakawa M, Yamanaka N, Yoshikawa H, Zhong YS, Shimada T, Morishita S (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38(12):1036–1045

    Google Scholar 

  • Xu W, Zhang HJ, Anderson AA (2012) Sugar gustatory receptor identified from the foregut of cotton bollworm Helicoverpa armigera. J Chem Ecol 38(12):1513–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yapici N, Kim YJ, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behavior. Nature 451(7174):33

    PubMed  Google Scholar 

  • Zhan GX, Liang GW (1999) Research and application of Trichogramma in China. Acta Agric Jiangxi 11:39–46. https://doi.org/10.19386/jcnkijxnyxb199902009

    Article  Google Scholar 

  • Zhang YF, Huang LQ, Ge F, Wang CZ (2011a) Tarsal taste neurons of Helicoverpa assulta (Guenee) respond to sugars and amino acids, suggesting a role in feeding and oviposition. J Insect Physiol 57:1332–1340

    CAS  PubMed  Google Scholar 

  • Zhang HJ, Anderson AR, Trowell SC, Luo AR, Xiang ZH, Xia QY (2011b) Topological and functional characterization of an insect gustatory receptor. PLoS ONE 6:e24111

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Xin-Xia Feng of Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, for rearing insects.

Funding

This work was supported by the National Science Foundation for Young Scientists of China (Grant No. 31601631), the Special Foundation for Key Research Program of Guangzhou (Grant No. 201804020062), and the project of National Program on Key Basic Research Project (973 Program, Grant No. 2013CB127602). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guren Zhang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Handling Editor: Günther Raspotnig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wu, H., Yi, J. et al. Two gustatory receptors are necessary for sensing sucrose in an egg parasitoid, Trichogramma chilonis. Chemoecology 30, 103–115 (2020). https://doi.org/10.1007/s00049-020-00301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-020-00301-9

Keywords

Navigation