Skip to main content
Log in

Effect of Thermal Annealing on Mid-Infrared Transmission in Semiconductor Alloy-Core Glass-Cladded Fibers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

We report a study investigating the effects of thermal annealing on the optical properties of Si-Ge alloy-core silica-cladded fibers. Low temperature fiber draw was performed with a laboratory-made draw tower at 1760 °C that minimizes impurity diffusion from cladding to the core. As a post-drawing process, Si–Ge core fibers were annealed in a box furnace to alter the core structure. Microstructural and optical properties of fibers were investigated, and transmission losses were measured as 28 dB/cm at 6.1 µm. Numerical studies were performed to analyze the experimental results and to find the optimum structure for low loss semiconductor-core glass-cladded fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanghera JS, Aggarwal ID. Active and passive chalcogenide glass optical fibers for IR applications: a review. J Non-Cryst Solids. 1999;256:6–16.

    Google Scholar 

  2. Willer U, Saraji M, Khorsandi A, Geiser P, Schade W. Near-and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt Lasers Eng. 2006;44(7):699–710.

    Google Scholar 

  3. Artyushenko V, Bocharnikov A, Sakharova T, Usenov I. Mid-infrared fiber optics for 1–18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing. Optik Photonik. 2014;9(4):35–9.

    CAS  Google Scholar 

  4. Tao G, Ebendor-Heidepriem H, Stolyarov AM, Danto S, Badding JV, Fink Y, Ballato J, Abouraddy AF. Infrared fibers. Adv Opt Photonics. 2015;7(2):379–458.

    CAS  Google Scholar 

  5. Aggarwal ID, Lu G, editors. Fluoride glass fiber optics. London: Academic Press; 2013.

    Google Scholar 

  6. Sazio PJ, Amezcua-Correa A, Finlayson CE, Hayes JR, Scheidemantel TJ, Baril NF, Jackson BR, Won DJ, Zhang F, Margine ER, Gopalan V. Microstructured optical fibers as high-pressure microfluidic reactors. Science. 2006;311(5767):1583–6.

    CAS  Google Scholar 

  7. Scott B, Wang K, Caluori V, Pickrell G. Fabrication of silicon optical fiber. Opt Eng. 2009;48(10):100501.

    Google Scholar 

  8. Ballato J, Snitzer E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Appl Opt. 1995;34(30):6848–54.

    CAS  Google Scholar 

  9. Ballato J, Hawkins T, Foy P, Stolen R, Kokuoz B, Ellison M, McMillen C, Reppert J, Rao AM, Daw M, Sharma S. Silicon optical fiber. Opt Express. 2008;16(23):18675–83.

    CAS  Google Scholar 

  10. Ballato J, Hawkins T, Foy P, Morris S, Hon NK, Jalali B, Rice R. Silica-clad crystalline germanium core optical fibers. Opt Lett. 2011;36(5):687–8.

    CAS  Google Scholar 

  11. Ordu M, Guo J, Tai B, Hong MK, Erramilli S, Ramachandran S, Basu SN. Mid-infrared transmission through germanium-core borosilicate glass-clad semiconductor fibers. Opt Mater Express. 2017;7(9):3107–15.

    CAS  Google Scholar 

  12. Peng S, Tang G, Huang K, Qian Q, Chen D, Zhang Q, Yang Z. Crystalline selenium core optical fibers with low optical loss. Opt Mater Express. 2017;7(6):1804–12.

    CAS  Google Scholar 

  13. Ballato J, Hawkins T, Foy P, McMillen C, Burka L, Reppert J, Podila R, Rao AM, Rice RR. Binary III–V semiconductor core optical fiber. Opt Express. 2010;18(5):4972–9.

    CAS  Google Scholar 

  14. Coucheron DA, Fokine M, Patil N, Breiby DW, Buset OT, Healy N, Peacock AC, Hawkins T, Jones M, Ballato J, Gibson UJ. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nat Commun. 2016;7:13265.

    CAS  Google Scholar 

  15. Chaudhuri S, Ji X, Huang HT, Day T, Gopalan V, Badding J. Small core SiGe alloy optical fibers by templated deposition. CLEO: applications and technology, OSA; 2017, p. JW2A-69.

  16. Song S, Healy N, Svendsen SK, Österberg UL, Covian AC, Liu J, Peacock AC, Ballato J, Laurell F, Fokine M, Gibson UJ. Crystalline GaSb-core optical fibers with room-temperature photoluminescence. Opt Mater Express. 2018;8(6):1435–40.

    CAS  Google Scholar 

  17. Song S, Lønsethagen K, Laurell F, Hawkins TW, Ballato J, Fokine M, Gibson UJ. Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres. Nat Commun. 2019;10(1):1–7.

    Google Scholar 

  18. Ordu M, Guo J, Tai B, Bird J, Ramachandran S, Basu S. Processing and optical properties of Ge-core fibers. Ceram Mater Energy Appl VI. 2017;37(6):85.

    Google Scholar 

  19. Humlíček J, Röseler A, Zettler T, Kekoua MG, Khoutsishvili EV. Infrared refractive index of germanium–silicon alloy crystals. Appl Opt. 1992;31(1):90–4.

    Google Scholar 

  20. Kischkat J, Peters S, Gruska B, Semtsiv M, Chashnikova M, Klinkmüller M, Fedosenko O, Machulik S, Aleksandrova A, Monastyrskyi G, Flores Y. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl Opt. 2012;51(28):6789–98.

    CAS  Google Scholar 

  21. Morris S, Hawkins T, Foy P, Ballato J, Martin SW, Rice R. Cladding glass development for semiconductor core optical fibers. Int J Appl Glass Sci. 2012;3(2):144–53.

    CAS  Google Scholar 

  22. Senior JM, Jamro MY. Optical fiber communications: principles and practice. 2nd ed. London: Pearson Education; 2009.

    Google Scholar 

  23. Ordu M, Guo J, Ng Pack G, Shah P, Ramachandran S, Hong MK, Ziegler LD, Basu SN, Erramilli S. Nonlinear optics in germanium mid-infrared fiber material: detuning oscillations in femtosecond mid-infrared spectroscopy. AIP Adv. 2017;7(9):095125.

    Google Scholar 

  24. Peacock AC, Campling J, Runge AF, Ren H, Shen L, Aktas O, Horak P, Healy N, Gibson UJ, Ballato J. Wavelength conversion and supercontinuum generation in silicon optical fibers. IEEE J Select Top Quantum Electron. 2017;24(3):1–9.

    Google Scholar 

  25. Ordu M. Fabrication and characterization of semiconductor core optical fibers for mid-infrared transmission, Doctoral dissertation. Boston University; 2018.

Download references

Acknowledgements

This project is supported by the National Science Foundation (NSF, Grant number CMMI-1301108, 2013). We would like to thank Y. Gautam for discussion on simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ordu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordu, M., Guo, J., Akosman, A.E. et al. Effect of Thermal Annealing on Mid-Infrared Transmission in Semiconductor Alloy-Core Glass-Cladded Fibers. Adv. Fiber Mater. 2, 178–184 (2020). https://doi.org/10.1007/s42765-020-00030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00030-2

Keywords

Navigation