Skip to main content
Log in

Coupling of Hierarchical Al2O3/TiO2 Nanofibers into 3D Photothermal Aerogels Toward Simultaneous Water Evaporation and Purification

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Serious freshwater shortage and environmental pollution boost the rapid development of solar-driven water production. Although improved evaporation rate has achieved in recent years, undesirable impurity (e.g., pollutant components) can also be inevitably evaporated and collected as impurity in produced freshwater. This work reports new ultra-light three-dimensional (3D) aerogels assembled by hierarchical Al2O3/TiO2 nanofibers and reduced graphene oxide (RGO) for exciting synchronized solar-driven evaporation and water purification. Hydrophilic Al2O3/TiO2 fibrous channels linked up the graphene hot-spots and water body for sufficient water supply and bulk water insulation. Meanwhile, featured with thermal insulation effect, the Al2O3/TiO2 nanofibers effectively locked the converted heat with less energy loss from sunlight. The introducing of Al2O3/TiO2 nanofibers into RGO aerogel led to the effective interfacial evaporation for a more rapid water evaporation rate (2.19 kg · m−2 · h−1, normalized to evaporation area including both top and side surface), which was 36% higher than that of pristine RGO aerogel. Moreover, simultaneous with the strong steam generation, Al2O3/TiO2 nanofibers in situ removed the pollutants within steam by photodegradation, achieving polluted wastewater purification with high contaminant removal ratio of 91.3%. Our work on coupling Al2O3/TiO2 nanofibers into photothermal aerogel provides attractive solutions for the challenges of clean water scarcity and serious environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao S, Jiang Q, Wu X, Ghim D, Gholami H, Chou I, Jun S, Singamaneni S. Advances in solar evaporator materials for freshwater generation. J Mater Chem A. 2019;7:24092.

    Article  CAS  Google Scholar 

  2. Qtaishat R, Banat F. Desalination by solar powered membrane distillation systems. Desalination. 2013;308:186.

    Article  CAS  Google Scholar 

  3. Al-Karaghouli A, Kazmerski L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sustain Energy Rev. 2013;24:343.

    Article  CAS  Google Scholar 

  4. Martinez-Huitle CA, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B. 2009;87:105.

    Article  CAS  Google Scholar 

  5. Jiang Y, Wang N, Biswas P, Fortner D. Facile aerosol synthesis and characterization of ternary crumpled graphene-TiO2-magnetite nanocomposites for advanced water treatment. ACS Appl Mater Interface. 2014;6:11766.

    Article  CAS  Google Scholar 

  6. Han X, Wang W, Zuo K, Chen L, Yuan L, Liang J, Li Q, Ajayan M, Zhao Y, Lou J. Bio-derived ultrathin membrane for solar driven water purification. Nano Energy. 2019;60:567.

    Article  CAS  Google Scholar 

  7. Qin D, Zhu J, Chen F, Yang L, Xiong C. Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification. Carbon. 2019;150:233.

    Article  CAS  Google Scholar 

  8. Cai T, Song J, Liu Y, Yin X, Li R, Yu Y, Ding B. Soft BiOBr@TiO2 nanofibrous membranes with hierarchical heterostructures as efficient and recyclable visible-light photocatalysts. Environ Sci Nano. 2018;5:2631.

    Article  CAS  Google Scholar 

  9. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.

    Article  CAS  Google Scholar 

  10. Li Z, Liu S, Song S, Xu W, Sun Y, Dai Y. Porous ceramic nanofibers as new catalysts toward heterogeneous reactions. Compos Commun. 2019;15:168.

    Article  Google Scholar 

  11. Wu X, Chen Y, Owens G, Chu D, Xu H. Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy. Mater Today Energy. 2019;12:277.

    Article  Google Scholar 

  12. Shi Y, Li Y, Jin Y, Zhuo F, Shi L, Chang J, Hong S, Ng C, Wang P. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule. 2018;2:1171.

    Article  CAS  Google Scholar 

  13. Chen C, Kuang Y, Hu L. Challenges and opportunities for solar evaporation. Joule. 2019;3:683.

    Article  CAS  Google Scholar 

  14. Gao M, Zhu L, Peh K, Ho W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci. 2019;12:841.

    Article  CAS  Google Scholar 

  15. Dai Y, Sun Y, Yao J, Ling D, Wang Y, Long H, Wang X, Lin B, Zeng H, Sun Y. Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J Mater Chem A. 2014;2:1060.

    Article  CAS  Google Scholar 

  16. Jiang F, Liu H, Li Y, Kuang D, Xu X, Chen J, Huang H, Jia C, Zhao P, Hitz E, Zhou B, Yang G, Cui F, Hu B. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl Mater Interfaces. 2018;10:1104.

    Article  CAS  Google Scholar 

  17. Weng M, Zhou P, Chen L, Zhang L, Zhang W, Huang Z, Liu C, Fan S. Multiresponsive bidirectional bending actuators fabricated by a pencil-on-paper method. Adv Funct Mater. 2016;26:7244.

    Article  CAS  Google Scholar 

  18. Liu X, Cheng H, Guo Z, Zhan Q, Qian J, Wang X. Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. ACS Appl Mater Interface. 2018;10:39661.

    Article  CAS  Google Scholar 

  19. Wang X, Zhu M, Sun Y, Fu W, Gu Q, Zhang C, Zhang Y, Dai Y, Sun Y. A new insight of the photothermal effect on the highly efficient visible-light-driven photocatalytic performance of novel-designed TiO2 rambutan-like microspheres decorated by Au nanorods. Part Part Syst Char. 2016;33:140.

    Article  CAS  Google Scholar 

  20. Dai Y, Jing Y, Zeng J, Qi Q, Wang C, Goldfeld D, Xu C, Zheng Y, Sun Y. Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. J Mater Chem. 2011;21:18174.

    Article  CAS  Google Scholar 

  21. Xu X, Zhang Q, Hao M, Hu Y, Lin Z, Peng L, Wang T, Ren X, Wang C, Zhao Z, Wan C, Fei H, Wang L, Zhu J, Sun H, Chen W, Du T, Deng B, Cheng G, Shakir I, Dames C, Fisher T, Zhang X, Li H, Huang Y, Duan X. Double-negative-index ceramic aerogels for thermal superinsulation. Science. 2019;363:723.

    Article  CAS  Google Scholar 

  22. Fu Y, Wang G, Mei T, Li J, Wang J, Wang X. Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sustain Chem Eng. 2017;5:4665.

    Article  CAS  Google Scholar 

  23. Yang Y, Zhao R, Zhang T, Zhao K, Xiao P, Ma Y, Ajayan P, Shi G, Chen Y. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano. 2018;12:829.

    Article  CAS  Google Scholar 

  24. Gong F, Li H, Wang W, Huang J, Xia D, Liao J, Wu M, Papavassiliou D. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy. 2019;58:322.

    Article  CAS  Google Scholar 

  25. Fu W, Dai Y, Tian J, Huang C, Liu Z, Liu K, Yin L, Huang F, Lu Y, Sun Y. In situ growth of hierarchical Al2O3 nanostructures onto TiO2 nanofibers surface: super-hydrophilicity, efficient oil/water separation and dye-removal. Nanotechnology. 2018;29:345607.

    Article  CAS  Google Scholar 

  26. Zhu B, Kou H, Liu Z, Wang Z, Macharia D, Zhu M, Wu B, Liu X, Chen Z. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl Mater Interfaces. 2019;11:35005.

    Article  CAS  Google Scholar 

  27. Liu Z, Wu B, Zhu B, Chen Z, Zhu M, Liu X. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv Funct Mater. 2019;29:1905485.

    Article  CAS  Google Scholar 

  28. Li X, Li J, Lu J, Xu N, Chen C, Min X, Zhu B, Li H, Zhou L, Zhu S, Zhang T, Zhu J. Enhancement of interfacial solar vapor generation by environmental energy. Joule. 2018;2:1331.

    Article  CAS  Google Scholar 

  29. Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E, Jia C, Gong A, Jiang F, Zhu J, Yang B, Xie J, Hu L. Highly flexible and efficient solar steam generation device. Adv Mater. 2017;29:1701756.

    Article  CAS  Google Scholar 

  30. Wang G, Fu Y, Guo A, Mei T, Wang J, Li J, Wang X. Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem Mater. 2017;29:5629.

    Article  CAS  Google Scholar 

  31. Zha J, Zhao X, Pu H, Tang S, Ke K, Bao Y, Bai L, Liu Y, Yang B, Yang W. Flexible anti-biofouling mxene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl Mater Interface. 2019;11:36589.

    Article  CAS  Google Scholar 

  32. He Z, Yang S, Ju Y, Sun C. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication. J Environ Sci. 2009;21:268.

    Article  CAS  Google Scholar 

  33. Li F, Lu C, Xu B, Cheng L. Photocatalytic degradation of Rhodamine B under visible light irradiation by TiO2 doped layered zirconium phosphates. J Nanosci Nanotechnol. 2020;20:1697.

    Article  Google Scholar 

  34. Li Y, Chen W. Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2–zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal Sci Technol. 2011;1:802.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21975042), Natural Science Foundation of Jiangsu Province (BK20171153), the Project of Six Talents Climax Foundation of Jiangsu (XCL-082), the Equipment Pre-research Fund of National Defence Science and Technology Key Laboratory (614220504030817), the Fundamental Research Funds for the Central Universities, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqian Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Xu, W., Li, Z. et al. Coupling of Hierarchical Al2O3/TiO2 Nanofibers into 3D Photothermal Aerogels Toward Simultaneous Water Evaporation and Purification. Adv. Fiber Mater. 2, 93–104 (2020). https://doi.org/10.1007/s42765-020-00029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00029-9

Keywords

Navigation