Skip to main content
Log in

Electrospun Core–Shell Fibrous 2D Scaffold with Biocompatible Poly(Glycerol Sebacate) and Poly-l-Lactic Acid for Wound Healing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Biomimetic scaffolds made by synthetic materials are usually used to replace the natural tissues aimed at speeding up the skin regeneration. In this study, a flexible and cytocompatible poly(glycerol sebacate)@poly-l-lactic acid (PGS@PLLA)  fibrous scaffold with a core–shell structure was fabricated by coaxial electrospinning, where the shell PLLA was used to be a skeleton with pores on the fibrous surface. The fibrous morphology with pores on the surface of the prepared fibers was observed by SEM. The core–shell microstructure of PGS@PLLA fibers was confirmed by TEM and Laser Scanning Confocal Microscopy (LSCM). In addition, the prepared fibers exhibited a strong ability to repair tissues of the skin wound, where the stability of cell security and proliferation, and the lower inflammatory response were all superior to those of pure PLLA scaffold. It’s worth noting that the percentage of skin tissue was regenerated by 95% within 14 days, which suggests the potential application for electrospun-based synthetic fibrous scaffolds on wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen G, Yu Y, Wu X, Wang G, Gu G, Wang F, Ren J, Zhang H, Zhao Y. Microfluidic electrospray niacin metal-organic frameworks encapsulated microcapsules for wound healing. Research.2019;2019:1.

    Google Scholar 

  2. Sun X, Zheng R, Cheng L, Zhao X, Jin R, Zhang L, Zhang Y, Zhang Y, Cui W. Two-dimensional electrospun nanofibrous membranes for promoting random skin flap survival. RSC Adv.2016;6:9360.

    CAS  Google Scholar 

  3. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for cardiac tissue engineering. Int J Cardiol.2013;167:1461.

    Google Scholar 

  4. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater.2015;14:737.

    CAS  Google Scholar 

  5. Chen G, Yu Y, Wu X, Wang G, Ren J, Zhao Y. Bioinspired multifunctional hybrid hydrogel promotes wound healing. Adv Funct Mater.2018;28:1801386.

    Google Scholar 

  6. Ifkovits JL, Devlin JJ, Eng G, Martens TP, Vunjak-Novakovic G, Burdick JA. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate). ACS Appl Mater Interfaces.2009;1:1878.

    CAS  Google Scholar 

  7. Pal P, Srivas PK, Dadhich P, Das B, Maulik D, Dhara S. Nano-/microfibrous cotton-wool-like 3d scaffold with core-shell architecture by emulsion electrospinning for skin tissue regeneration. ACS Biomater Sci Eng.2017;3:3563.

    CAS  Google Scholar 

  8. Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater.2015;14:1262.

    CAS  Google Scholar 

  9. Sperling LE, Reis KP, Pranke P, Wendorff JH. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery. Drug Discov Today.2016;21:1243.

    CAS  Google Scholar 

  10. Thakur N, Sargur Ranganath A, Sopiha K, Baji A. Thermoresponsive cellulose acetate-poly(N-isopropylacrylamide) core-shell fibers for controlled capture and release of moisture. ACS Appl Mater Interfaces.2017;9:29224.

    CAS  Google Scholar 

  11. Lv D, Wang R, Tang G, Mou Z, Lei J, Han J, De Smedt S, Xiong R, Huang C. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl Mater Interfaces.2019;11:12880.

    CAS  Google Scholar 

  12. Sun W, Chen G, Wang F, Qin Y, Wang Z, Nie J, Ma G. Polyelectrolyte-complex multilayer membrane with gradient porous structure based on natural polymers for wound care. Carbohydr Polym.2018;181:183.

    CAS  Google Scholar 

  13. Liu Y, Liang X, Zhang R, Lan W, Qin W. Fabrication of electrospun polylactic acid/cinnamaldehyde/beta-cyclodextrin fibers as an antimicrobial wound dressing. Polymers (Basel).2017;9:464.

    Google Scholar 

  14. Wei DX, Dao JW, Chen GQ. A micro-ark for cells: highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater.2018;30:1802273.

    Google Scholar 

  15. Huan S, Liu G, Cheng W, Han G, Bai L. Electrospun poly(lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties. Biomacromolecules.2018;19:1037.

    CAS  Google Scholar 

  16. Rezabeigi E, Wood-Adams PM, Demarquette NR. Complex morphology formation in electrospinning of binary and ternary poly(lactic acid) solutions. Macromolecules.2018;51:4094.

    CAS  Google Scholar 

  17. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science.2010;329:528.

    CAS  Google Scholar 

  18. Fernandes JG, Correia DM, Botelho G, Padrão J, Dourado F, Ribeiro C, Lanceros-Méndez S, Sencadas V. PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polym Test.2014;34:64.

    CAS  Google Scholar 

  19. Gupta K, Kumar MR. Preparation, characterization and release profiles of pH-sensitive chitosan beads. Polym Int.2000;49:141.

    CAS  Google Scholar 

  20. Sun X, Lang Q, Zhang H, Cheng L, Zhang Y, Pan G, Zhao X, Yang H, Zhang Y, Santos HA, Cui W. Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration. Adv Funct Mater.2017;27:1604617.

    Google Scholar 

  21. Valerio O, Pin JM, Misra M, Mohanty AK. Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega.2016;1:1284.

    CAS  Google Scholar 

  22. Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol.2002;20:602.

    CAS  Google Scholar 

  23. Jeffries EM, Allen RA, Gao J, Pesce M, Wang Y. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomater.2015;18:30.

    CAS  Google Scholar 

  24. Liu G, Hinch B, Beavis AD. Mechanisms for the transport of α, ω-dicarboxylates through the mitochondrial inner membrane. J Biol Chem.1996;271:25338.

    CAS  Google Scholar 

  25. Loh XJ, Abdul Karim A, Owh C. Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. J Mater Chem B.2015;3:7641.

    CAS  Google Scholar 

  26. You ZR, Hu MH, Tuan-Mu HY, Hu JJ. Fabrication of poly(glycerol sebacate) fibrous membranes by coaxial electrospinning: Influence of shell and core solutions. J Mech Behav Biomed Mater.2016;63:220.

    CAS  Google Scholar 

  27. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater.2005;4:518.

    CAS  Google Scholar 

  28. Chen Y, Sui L, Fang H, Ding C, Li Z, Jiang S, Hou H. Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Compos Sci Technol.2019;174:20.

    CAS  Google Scholar 

  29. Yang D, Li L, Chen B, Shi S, Nie J, Ma G. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer.2019;163:74.

    CAS  Google Scholar 

  30. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res Part A.2003;67A:531.

    CAS  Google Scholar 

  31. Dai Z, Deng J, Yu Q, Helberg RML, Janakiram S, Ansaloni L, Deng L. Fabrication and evaluation of bio-based nanocomposite TFC hollow fiber membranes for enhanced CO2 capture. ACS Appl Mater Interfaces.2019;11:10874.

    CAS  Google Scholar 

  32. Liu Y, Zhou G, Liu Z, Guo M, Jiang X, Taskin MB, Zhang Z, Liu J, Tang J, Bai R, Besenbacher F, Chen M, Chen C. Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration. Sci Rep.2017;7:8197.

    Google Scholar 

  33. Miao D, Huang Z, Wang X, Yu J, Ding B. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small.2018;14:e1801527.

    Google Scholar 

  34. Nie G, Lu X, Chi M, Jiang Y, Wang C. CoOx nanoparticles embedded in porous graphite carbon nanofibers derived from electrospun polyacrylonitrile@polypyrrole core–shell nanostructures for high-performance supercapacitors. RSC Adv.2016;6:54693.

    CAS  Google Scholar 

  35. Sedghi R, Sayyari N, Shaabani A, Niknejad H, Tayebi T. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer.2018;142:244.

    CAS  Google Scholar 

  36. Hou L, Zhang X, Mikael PE, Lin L, Dong W, Zheng Y, Simmons TJ, Zhang F, Linhardt RJ. Biodegradable and bioactive PCL-PGS core-shell fibers for tissue engineering. ACS Omega.2017;2:6321.

    CAS  Google Scholar 

  37. Cheng G, Yin C, Tu H, Jiang S, Wang Q, Zhou X, Xing X, Xie C, Shi X, Du Y, Deng H, Li Z. Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano.2019;13:6372.

    CAS  Google Scholar 

  38. Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Biol Mater.2019;2:952.

    CAS  Google Scholar 

  39. Yang X, Yang D, Zhu X, Nie J, Ma G. Electrospun and photocrosslinked gelatin/dextran–maleic anhydride composite fibers for tissue engineering. Eur Polym J.2019;113:142.

    CAS  Google Scholar 

  40. Yan Y, Sencadas V, Jin T, Huang X, Chen J, Wei D, Jiang Z. Tailoring the wettability and mechanical properties of electrospun poly(l-lactic acid)-poly(glycerol sebacate) core-shell membranes for biomedical applications. J Colloid Interface Sci.2017;508:87.

    CAS  Google Scholar 

  41. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer.1999;40:4585.

    CAS  Google Scholar 

  42. Michael B, Wolfgang C, Thomas F, et al. Nanostructured fibers via electrospinning. Adv Mater.2001;1(13):70.

    Google Scholar 

  43. Yan Y, Sencadas V, Zhang J, Wei D, Jiang Z. Superomniphilic poly(glycerol sebacate)-poly(l-lactic acid) electrospun membranes for oil spill remediation. Adv Mater Interfaces.2017;4:1700484.

    Google Scholar 

  44. Huang W, Restrepo D, Jung JY, Su FY, Liu Z, Ritchie RO, McKittrick J, Zavattieri P, Kisailus D. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv Mater.2019;1901561:1.

    Google Scholar 

  45. Qin Z, Zhang P, Wu Z, Yin M, Geng Y, Pan K. Coaxial electrospinning for flexible uniform white-light-emitting porous fibrous membrane. Mater Des.2018;147:175.

    CAS  Google Scholar 

  46. Lee J, Song B, Subbiah R, Chung JJ, Choi UH, Park K, Kim SH, Oh SJ. Effect of chain flexibility on cell adhesion: semi-flexible model-based analysis of cell adhesion to hydrogels. Sci Rep.2019;9:2463.

    Google Scholar 

  47. Schoen B, Avrahami R, Baruch L, Efraim Y, Goldfracht I, Elul O, Davidov T, Gepstein L, Zussman E, Machluf M. Electrospun extracellular matrix: paving the way to tailor-made natural scaffolds for cardiac tissue regeneration. Adv Funct Mater.2017;27:1700427.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 51973009) and Xuzhou Natural Science Foundation in China (KC18201 and KC18108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongzhi Yang or Guiping Ma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file2 (DOCX 1081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, L., Yang, D. et al. Electrospun Core–Shell Fibrous 2D Scaffold with Biocompatible Poly(Glycerol Sebacate) and Poly-l-Lactic Acid for Wound Healing. Adv. Fiber Mater. 2, 105–117 (2020). https://doi.org/10.1007/s42765-020-00027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00027-x

Keywords

Navigation