Skip to main content
Log in

Evaluation of intercalated layered materials as an antimicrobial and drug delivery system: a comparative study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to prepare hybrid organo-layered materials using intercalation process then evaluated them as a drug release and antibacterial materials. Four kinds of organo-layered materials cetyltrimethylammonium bromide-bentonite (CTA-bent), ampicillin-bentonite (AMP-bent), CTA-magadiite (CTA-mag) and ampicillin-magadiite (AMP-mag) have been prepared and characterized using several techniques. The results showed that the CTA and AMP molecules are incorporated between the interlayer spaces, subsequently leading to an increase of the basal spacing of bentonite and magadiite solids, in which preserving their two-dimensional character. Antibacterial activities of the intercalated layered materials were determined against Gram positive and Gram negative bacteria. The ranking of antibacterial activity of the intercalated materials was as organo-modified bentonite > organo-modified magadiite. In vitro drug release profile in simulated intestinal fluid pH 7.4 at 37 °C was evaluated. A satisfactory percent of cumulative AMP release from AMP-bent was observed. The cumulative drug release from AMP-bent and AMP-mag was 31.13% and 25.24%, respectively. This work highlighted the role of the natural surface of layered materials in the release of a drug by involving surface-drug interaction forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lazzara, G., Cavallaro, G., Panchal, A., Fakhrullin, R., Stavitskaya, A., Vinokurov, V., Lvov, Y.: An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 35, 42–50 (2018)

    Article  CAS  Google Scholar 

  2. García-Villén, F., Carazo, E., Borrego-Sánchez, A., Sánchez-Espejo, R., Cerezo, P., Viseras, C., Aguzzi, C.: in Modified Clay and Zeolite Nanocomposite Materials, pp. 129–166. Elsevier, Amsterdam (2019)

    Book  Google Scholar 

  3. Nabipour, H.: Design and evaluation of non-steroidal anti-inflammatory drug intercalated into layered zinc hydroxide as a drug delivery system. J. Inorg. Organomet. Polym. Mater. 29(5), 1807–1817 (2019)

    Article  CAS  Google Scholar 

  4. Aguzzi, C., Cerezo, P., Viseras, C., Caramella, C.: Use of clays as drug delivery systems: possibilities and limitations. Appl. Clay Sci. 36, 22–36 (2007)

    Article  CAS  Google Scholar 

  5. Rives, V., del Arco, M., Martín, C.: Intercalation of drugs in layered double hydroxides and their controlled release: a review. Appl. Clay Sci. 88, 239–269 (2014)

    Article  CAS  Google Scholar 

  6. Cheikh, D., García-Villén, F., Majdoub, H., Zayani, M.B., Viseras, C.: Complex of chitosan pectin and clay as diclofenac carrier. Appl. Clay Sci. 172, 155–164 (2019)

    Article  CAS  Google Scholar 

  7. Roth, W.J., Gil, B., Makowski, W., Marszalek, B., Eliášová, P.: Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 45, 3400–3438 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. Rebitski, E.P., Souza, G.P., Santana, S.A., Pergher, S.B., Alcântara, A.C.: Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Appl. Clay Sci. 173, 35–45 (2019)

    Article  CAS  Google Scholar 

  9. Gao, J., Feng, Y., Guo, W., Jiang, L.: Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Selvam, T., Inayat, A., Schwieger, W.: Reactivity and applications of layered silicates and layered double hydroxides. Dalton Trans. 43, 10365–10387 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, J., Luan, L., Wang, H., Xi, L., Yao, K.: Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl. Clay Sci. 36, 297–301 (2007)

    Article  CAS  Google Scholar 

  12. Joshi, G.V., Kevadiya, B.D., Patel, H.A., Bajaj, H.C., Jasra, R.V.: Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int. J. Pharm. 374, 53–57 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Nunes, A.R., Araújo, K.R., Moura, A.O., Prado, A.G.: Magadiite as a support for the controlled release of herbicides. Chem. Pap. 72, 479–486 (2018)

    Article  CAS  Google Scholar 

  14. Ghadiri, M., Chrzanowski, W., Rohanizadeh, R.: Biomedical applications of cationic clay minerals. RSC Adv. 5, 29467–29481 (2015)

    Article  CAS  Google Scholar 

  15. Jafarbeglou, M., Abdouss, M., Shoushtari, A.M., Jafarbeglou, M.: Clay nanocomposites as engineered drug delivery systems. RSC Adv. 6, 50002–50016 (2016)

    Article  CAS  Google Scholar 

  16. Khlibsuwan, R., Siepmann, F., Siepmann, J., Pongjanyakul, T.: Chitosan-clay nanocomposite microparticles for controlled drug delivery: Effects of the MAS content and TPP crosslinking. J. Drug Deliv. Sci. Technol. 40, 1–10 (2017)

    Article  CAS  Google Scholar 

  17. Abdelkrim, S., Mokhtar, A., Djelad, A., Bennabi, F., Souna, A., Bengueddach, A., Sassi, M.: Chitosan/Ag-bentonite nanocomposites: preparation, characterization, swelling and biological properties. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01219-8

    Article  Google Scholar 

  18. Mokhtar, A., Abdelkrim, S., Djelad, A., Sardi, A., Boukoussa, B., Sassi, M., Bengueddach, A.: Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr. Polym. 229, 115399 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, J., Zhang, Y., Zhang, S., Wang, Q., Chen, M., Hu, T., Meng, C.: Synthesis and characterization of Mn-Silicalite-1 by the hydrothermal conversion of Mn-magadiite under the neutral condition and its catalytic performance on selective oxidation of styrene. Microporous Mesoporous Mater. 268, 16–24 (2018)

    Article  CAS  Google Scholar 

  20. Joseph, A., Vellayan, K., González, B., Vicente, M.A., Gil, A.: Effective degradation of methylene blue in aqueous solution using Pd-supported Cu-doped Ti-pillared montmorillonite catalyst. Appl. Clay Sci. 168, 7–10 (2019)

    Article  CAS  Google Scholar 

  21. Nunes, A.R., Moura, A.O., Prado, A.G.: Calorimetric aspects of adsorption of pesticides 2, 4-D, diuron and atrazine on a magadiite surface. J. Therm. Anal. Calorim. 106, 445–452 (2011)

    Article  CAS  Google Scholar 

  22. Joshi, G.V., Patel, H.A., Kevadiya, B.D., Bajaj, H.C.: Montmorillonite intercalated with vitamin B1 as drug carrier. Appl. Clay Sci. 45, 248–253 (2009)

    Article  CAS  Google Scholar 

  23. Sun, B., Zhang, M., Zhou, N., Chu, X., Yuan, P., Chi, C., Wu, F., Shen, J.: Study on montmorillonite–chlorhexidine acetate–terbinafine hydrochloride intercalation composites as drug release systems. RSC Adv. 8, 21369–21377 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vieira, R.B., Moura, P.A., Vilarrasa-García, E., Azevedo, D.C., Pastore, H.O.: Pastore, polyamine-grafted magadiite: high CO2 selectivity at capture from CO2/N2 and CO2/CH4 mixtures. J. Util. 23, 29–41 (2018)

    Article  CAS  Google Scholar 

  25. Cavalcanti, G.R., Fonseca, M.G., da Silva Filho, E.C., Jaber, M.: Thiabendazole/bentonites hybrids as controlled release systems. Colloids Surf. B 176, 249–255 (2019)

    Article  CAS  Google Scholar 

  26. Andrade, K.N., Pérez, A.M.P., Arízaga, G.G.C.: Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Appl. Clay Sci. 181, 105214 (2019)

    Article  CAS  Google Scholar 

  27. Yahia, Y., García-Villén, F., Djelad, A., Belaroui, L.S., Sanchez-Espejo, R., Sassi, M., López-Galindo, A., Viseras, C.: Crosslinked palygorskite-chitosan beads as diclofenac carriers. Appl. Clay Sci. 180, 105169 (2019)

    Article  CAS  Google Scholar 

  28. Almasy, L., Putz, A.-M., Tian, Q., Kopitsa, G.P., Khamova, T.V., Barabas, R., Rigo, M., Bota, A., Wacha, A., Mirica, M.: Hybrid mesoporous silica with controlled drug release. J. Serbian Chem. Soc. 84, 1027–1039 (2019)

    Article  Google Scholar 

  29. Buffet-Bataillon, S., Tattevin, P., Bonnaure-Mallet, M., Jolivet-Gougeon, A.: Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int. J. Antimicrob. Agents 39, 381–389 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. Birnie, C.R., Malamud, D., Schnaare, R.L.: Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N, N-dimethylamine oxides with variations in chain length. Antimicrob. Agents Chemother. 44, 2514–2517 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng, S., Gao, Q., Du, Z., Shi, J.: Precursors of TAA-magadiite nanocomposites. Appl. Clay Sci. 31, 229–237 (2006)

    Article  CAS  Google Scholar 

  32. Xue, W., He, H., Zhu, J., Yuan, P.: FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochim Acta Part A 67, 1030–1036 (2007)

    Article  CAS  Google Scholar 

  33. Park, C.W., Kim, B.H., Yang, H.-M., Seo, B.-K., Moon, J.-K., Lee, K.-W.: Removal of cesium ions from clays by cationic surfactant intercalation. Chemosphere 168, 1068–1074 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Sassi, M., Miehé-Brendlé, J., Patarin, J., Bengueddach, A., De Gruyter.: Na-magadiite prepared in a water/alcohol medium: synthesis, characterization and use as a host material to prepare alkyltrimethylammonium-and Si-pillared derivates. J. Clay. Miner. 40, 369–378 (2005)

  35. Mokhtar, A., Djelad, A., Adjdir, M., Zahraoui, M., Bengueddach, A., Sassi, M.: Intercalation of hydrophilic antibiotic into the interlayer space of the layered silicate magadiite. J. Mol. Struct. 1171, 190–195 (2018)

    Article  CAS  Google Scholar 

  36. Dizman, B., Badger, J.C., Elasri, M.O., Mathias, L.J.: Antibacterial fluoromicas: a novel delivery medium. Appl. Clay Sci. 38, 57–63 (2007)

    Article  CAS  Google Scholar 

  37. Trikeriotis, M., Ghanotakis, D.F.: Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Int. J. Pharm. 332, 176–184 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Waworuntu, G., Hanelin, G.A., Wiyanto, L.D., Laysandra, L., Soetaredjo, F.E.: Preparation of antibacterial bentonite β lactam antibiotic composite. EQA Environ. Qual. 32, 45–55 (2019)

    Google Scholar 

  39. Parolo, M., Avena, M., Pettinari, G., Zajonkovsky, I., Valles, J., Baschini, M.: Antimicrobial properties of tetracycline and minocycline-montmorillonites. Appl. Clay Sci. 49, 194–199 (2010)

    Article  CAS  Google Scholar 

  40. Wang, C.-J., Li, Z., Jiang, W.-T., Jean, J.-S., Liu, C.-C.: Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. J. Hazard. Mater. 183, 309–314 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Chung, H.-E., Park, D.-H., Choy, J.-H., Choi, S.-J.: Intracellular trafficking pathway of layered double hydroxide nanoparticles in human cells: size-dependent cellular delivery. Appl. Clay Sci. 65, 24–30 (2012)

    Article  CAS  Google Scholar 

  42. Yang, J.-H., Han, Y.-S., Park, M., Park, T., Hwang, S.-J., Choy, J.-H.: New inorganic-based drug delivery system of indole-3-acetic acid-layered metal hydroxide nanohybrids with controlled release rate. Chem. Mater. 19, 2679–2685 (2007)

    Article  CAS  Google Scholar 

  43. Oh, J.-M., Park, D.-H., Choi, S.-J., Choy, J.-H.: LDH nanocontainers as bio-reservoirs and drug delivery carriers. Recent Pat. Nanotechnol. 6, 200–217 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. Cherifi, Z., Boukoussa, B., Zaoui, A., Belbachir, M., Meghabar, R.: Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem. 48, 188–198 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. Kahr, G., Madsen, F.: Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl. Clay Sci. 9, 327–336 (1995)

    Article  CAS  Google Scholar 

  46. Mokhtar, A., Djelad, A., Bengueddach, A., Sassi, M.: CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: synthetic path and characterization. Int. J. Biol. Macromol. 118, 2149–2155 (2018)

    Article  CAS  PubMed  Google Scholar 

  47. Mokhtar, A., Djelad, A., Bengueddach, A., Sassi, M.: Structural and antibacterial properties of HyZnxNa2-xSi14O29nH2O layered silicate compounds, prepared by ion-exchange reaction. J. Inorg. Organomet. Polym. Mater. 29(3), 1029–1038 (2019)

    Article  CAS  Google Scholar 

  48. Zahraoui, M., Mokhtar, A., Adjdir, M., Bennabi, F., Khaled, R., Djelad, A., Bengueddach, A., Sassi, M.: Preparation of Al-magadiite material, copper ions exchange and effect of counter-ions: antibacterial and antifungal applications. Res. Chem. Intermed. 45(2), 633–644 (2018)

    Article  CAS  Google Scholar 

  49. Galindo, A.L., Ruiz, J.T., Lopez, J.G.: Mineral quantification in sepiolite-palygorskite deposits using X-ray diffraction and chemical data. Clay Miner. 31, 217–224 (1996)

    Article  CAS  Google Scholar 

  50. Zhirong, L., Uddin, M.A., Zhanxue, S.: FT-IR and XRD analysis of natural Na-bentonite and Cu (II)-loaded Na-bentonite. Spectrochim. Acta Part A 79, 1013–1016 (2011)

    Article  CAS  Google Scholar 

  51. Zahaf, F., Dali, N., Marouf, R., Ouadjenia, F., Schott, J.: Application of hydroxy-aluminum-and cetyltrimethylammonium bromide-intercalated bentonite for removing acid and reactive dyes. Desalin. Water Treat. 57, 21045–21053 (2016)

    CAS  Google Scholar 

  52. Abas SNA, Ismail MHS, Siajam SI, Kamal ML, Comparative study on adsorption of Pb (II) ions by alginate beads and mangrove-alginate composite beads. In A. Hadi, F. Hamzah and M.N.M. Rodhi (eds) Advanced Materials Research. Trans Tech Publications. 1113, (2015)

  53. Brindley, G.: Unit cell of magadiite in air, in vacuo, and under other conditions. Am. Mineral. 54, 1583–1591 (1969)

    CAS  Google Scholar 

  54. Schwieger, W., Lagaly, G., Auerbach, S., Carrado, K., Dutta, P.: Marcel Dekker, Inc., New York, pp. 541–551 (2004)

  55. Mokhtar, A., Djelad, A., Bengueddach, A., Sassi, M.: Biopolymer-layered polysilicate micro/nanocomposite based on chitosan intercalated in magadiite. Res. Chem. Intermed. 44(11), 6469–6478 (2018)

    Article  CAS  Google Scholar 

  56. Boudahri, M., Bouazza, D., Adjdir, M., Miloudi, H., Abdelkader, N., Tayeb, A.: Remediation of copper ions from aqueous solution using hybrid magadiite: kinetics, isotherm and mechanism of removal. Res. Chem. Intermed. 44, 6105–6117 (2018)

    Article  CAS  Google Scholar 

  57. Shirzad-Siboni, M., Khataee, A., Hassani, A., Karaca, S.: Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: kinetic and equilibrium studies. C.R. Chim. 18, 204–214 (2015)

    Article  CAS  Google Scholar 

  58. Benkhatou, S., Djelad, A., Sassi, M., Bouchekara, M., Bengueddach, A.: Lead(II) removal from aqueous solutions by organic thiourea derivatives intercalated magadiite. Desalin. Water Treat. 57, 9383–9395 (2016)

    Article  CAS  Google Scholar 

  59. Paluszkiewicz, C., Holtzer, M., Bobrowski, A.: FTIR analysis of bentonite in moulding sands. J. Mol. Struct. 880, 109–114 (2008)

    Article  CAS  Google Scholar 

  60. Alabarse, F.G., Conceição, R.V., Balzaretti, N.M., Schenato, F., Xavier, A.M.: In-situ FTIR analyses of bentonite under high-pressure. Appl. Clay Sci. 51, 202–208 (2011)

    Article  CAS  Google Scholar 

  61. Wang, L., Wang, A.: Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. J. Hazard. Mater. 160, 173–180 (2008)

    Article  CAS  PubMed  Google Scholar 

  62. Firyal, M., Rahi, F.A., Wessal, M.K., Alshather, A.I., Shurooq, S.: Modification of starch with allopurinol and ampicilline as sulfonamide derivatives. Al-Nahrain J. Sci. 17, 21–26 (2014)

    Google Scholar 

  63. Rojo, J.M., Ruiz-Hitzky, E., Sanz, J.: Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorg. Chem. 27, 2785–2790 (1988)

    Article  CAS  Google Scholar 

  64. Li, S., Mao, Y., Ploehn, H.J.: Interlayer functionalization of magadiite with sulfur-containing organosilanes. Colloids Surf. A 506, 320–330 (2016)

    Article  CAS  Google Scholar 

  65. Taleb, K., Pillin, I., Grohens, Y., Saidi-Besbes, S.: Gemini surfactant modified clays: effect of surfactant loading and spacer length. Appl. Clay Sci. 161, 48–56 (2018)

    Article  CAS  Google Scholar 

  66. Kooli, F., Liu, Y., Abboudi, M., Rakass, S., Hassani, H., Ibrahim, S., Al-Faze, R.: Application of organo-magadiites for the removal of eosin dye from aqueous solutions: thermal treatment and regeneration. Molecules 23, 2280 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  67. Attar, K., Bouazza, D., Miloudi, H., Tayeb, A., Boos, A., Sastre, A.M., Demey, H.: Cadmium removal by a low-cost magadiite-based material: characterization and sorption applications. J. Environ. Chem. Eng. 6, 5351–5360 (2018)

    Article  CAS  Google Scholar 

  68. Kooli, F., Mianhui, L., Alshahateet, S.F., Chen, F., Yinghuai, Z.: Characterization and thermal stability properties of intercalated Na-magadiite with cetyltrimethylammonium (C16TMA) surfactants. J. Phys. Chem. Solids 67, 926–931 (2006)

    Article  CAS  Google Scholar 

  69. Schwieger, W., Selvam, T., Gravenhorst, O., Pfänder, N., Schlögl, R., Mabande, G.: Intercalation of [Pt (NH3)4]2+ ions into layered sodium silicate magadiite: a useful method to enhance their stabilisation in a highly dispersed state. J. Phys. Chem. Solids 65, 413–420 (2004)

    Article  CAS  Google Scholar 

  70. Mokhtar, A., Medjhouda, Z.A.K., Djelad, A., Boudia, A., Bengueddach, A., Sassi, M.: Structure and intercalation behavior of copper II on the layered sodium silicate magadiite material. Chem. Pap. 72, 39–50 (2018)

    Article  CAS  Google Scholar 

  71. Holešová, S., Valášková, M., Plevová, E., Pazdziora, E., Matějová, K.: Preparation of novel organovermiculites with antibacterial activity using chlorhexidine diacetate. J. Colloid Interface Sci. 342, 593–597 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, A., Bennabi, F., Abdelkrim, S. et al. Evaluation of intercalated layered materials as an antimicrobial and drug delivery system: a comparative study. J Incl Phenom Macrocycl Chem 96, 353–364 (2020). https://doi.org/10.1007/s10847-020-00978-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00978-z

Keywords

Navigation