Skip to main content
Log in

Rapid non-destructive moisture content monitoring using a handheld portable Vis–NIR spectrophotometer during solar drying of mangoes (Mangifera indica L.)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of the present work was to determine the efficacy of handheld portable Vis–NIR spectroscopy in rapid non-destructive moisture content monitoring during the solar drying of mangoes. Mango slices (1.5 cm thick) from five (5) commercial mango cultivars and two breeding selections were pre-treated by hot water blanching, dipping in distilled water (control); sodium metabisulphite and citric acid solutions. Vis–NIR absorbance spectra in the range of 474–1047 nm (191 spectra points) of the samples were recorded during solar drying at temperatures of 16.8–54.3 °C and relative humidity of 19.2–99.3%. A training set consisting of 168 spectra was utilized to develop models based on partial least squares regression. Chemometric analysis gave an optimum wavelength range model that could explain 95.2% of the variance in the moisture content with a detection limit of 5.39%. The optimum model was tested for prediction of the moisture content based on 72 spectra from similarly treated samples. The model could explain 91.6–98.7% of the variance in the moisture content of the test samples with detection limits ranging from 3.97–6.61% w/w. The research demonstrated that portable hand-held Vis–NIR spectroscopy was a robust and effective method for rapid non-destructive monitoring of moisture during solar drying of mangoes. Non-destructive hand-held portable Vis–NIR spectrophotometers can hence facilitate the production of high quality solar dried mangoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Sagar, P.S. Kumar, J. Food Sci. Technol. 47(1), 15–26 (2010)

    Article  CAS  Google Scholar 

  2. N. Gupta, S. Jain, J. Food Sci. Technol. 51(10), 2499–2507 (2014)

    Article  CAS  Google Scholar 

  3. I.P. Ibarra-Garza, P.A. Ramos-Parra, C. Hernández-Brenes, D.A. Jacobo-Velázquez, Postharvest Biol. Technol. 103, 45–54 (2015)

    Article  CAS  Google Scholar 

  4. V. Galán Saúco, Acta Horticult. 1183, 351–364 (2015)

    Google Scholar 

  5. FAOSTAT, Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT, Rome, 2017). https://faostat3.fao.org/home/E2017. Accessed 10 Apr 2019

  6. DAFF, Department of Agriculture Fisheries and Forestry (2017). https://www.nda.agric.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/field%20crops/Mango%20Market%20Value%20Chain%20Profile%202017.pdf. Accessed 10 Sept 2019

  7. H. Affognon, C. Mutungi, P. Sanginga, C. Borgemeister, World Dev. 66, 49–68 (2015)

    Article  Google Scholar 

  8. J. Rankins, S.K. Sathe, M.T. Spicer, J. Am. Diet Assoc. 108(6), 986–990 (2008)

    Article  Google Scholar 

  9. R.O. Lamidi, L. Jiang, P.B. Pathare, Y.D. Wang, A.P. Roskilly, Appl. Energy 233–234, 367–385 (2019)

    Article  Google Scholar 

  10. H. El Hage, A. Herez, M. Ramadan, H. Bazzi, M. Khaled, Energy 157, 815–829 (2018)

    Article  Google Scholar 

  11. V. Tomar, G. Tiwari, B. Norton, Sol. Energy 154, 2–13 (2017)

    Article  Google Scholar 

  12. S. Escribano, W.V. Biasi, R. Lerud, D.C. Slaughter, E.J. Mitcham, Postharvest Biol. Technol. 128, 112–120 (2017)

    Article  CAS  Google Scholar 

  13. A. Bonneau, R. Boulanger, M. Lebrun, I. Maraval, Z. Gunata, Int. J. Food Sci. Technol. 51(3), 789–800 (2016)

    Article  CAS  Google Scholar 

  14. K.B. Koua, W.F. Fassinou, P. Gbaha, S. Toure, Energy 34(10), 594–1602 (2009)

    Article  Google Scholar 

  15. A.O. Dissa, J. Bathiebo, S. Kam, W. Savadogo, H. Desmorieux, J. Koulidiati, Renew. Energy 34(4), 1000–1008 (2009)

    Article  Google Scholar 

  16. A.O. Dissa, D.J. Bathiebo, H. Desmorieux, O. Coulibaly, J. Koulidiati, Energy 36(5), 2517–2527 (2011)

    Article  Google Scholar 

  17. W. Wang, M. Li, R.H.E. Hassanien, Y. Wang, L. Yang, Appl. Therm. Eng. 134, 310–321 (2018)

    Article  Google Scholar 

  18. İ. Doymaz, M. Sahin, Food Measure 10(2), 364–373 (2016)

    Article  Google Scholar 

  19. M.J. Barroca, R.P.F. Guiné, A.R.P. Calado, M. Mendes, Food Measure 11(4), 1815–1826 (2017)

    Article  Google Scholar 

  20. İ. Doymaz, Food Bioprod. Process. 88(2–3), 124–132 (2010)

    Article  CAS  Google Scholar 

  21. A. Arévalo-Pinedo, F.E.X. Murr, J. Food Eng. 80(1), 152–156 (2007)

    Article  Google Scholar 

  22. J.U. Porep, D.R. Kammerer, R. Carle, Trends Food Sci. Technol. 46(2), 211–230 (2015)

    Article  CAS  Google Scholar 

  23. M. Manley, Chem. Soc. Rev. 43(24), 8200–8214 (2014)

    Article  CAS  Google Scholar 

  24. B.M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn, Postharvest Biol. Technol. 46(2), 99–118 (2007)

    Article  Google Scholar 

  25. H.S. El Mesery, H. Mao, A.E.-F. Abomohra, Sensors 19, 846 (2019). https://doi.org/10.3390/s19040846

    Article  CAS  Google Scholar 

  26. S.N. Jha, K. Narsaiah, P. Jaiswal, R. Bhardwaj, M. Gupta, R. Kumar, R. Sharma, J. Food Eng. 124, 152–157 (2014)

    Article  Google Scholar 

  27. J.P. Dos-Santos-Neto, M.W.D. De-Assis, I.P. Casagrande, L.C.C. Júnior, G.H. De-Almeida-Teixeira, Postharvest Biol. Technol. 130, 75–80 (2017)

    Article  Google Scholar 

  28. Y.-Y. Pu, D.-W. Sun, Food Chem. 188, 271–278 (2015)

    Article  CAS  Google Scholar 

  29. Y.-Y. Pu, D.-W. Sun, Innov. Food Sci. Emerg. Technol. 33, 348–356 (2016)

    Article  Google Scholar 

  30. N. Nguyen-Do-Trong, J.C. Dusabumuremyi, W. Saeys, J. Food Eng. 238, 85–94 (2018)

    Article  Google Scholar 

  31. AOAC, Official Methods of Analysis,, vol. 2, 17th edn. (AOAC, Wahsington, DC, 2002)

    Google Scholar 

  32. S. Prachayawarakorn, W. Tia, N. Plyto, S. Soponronnarit, J. Food Eng. 85(4), 509–517 (2008)

    Article  Google Scholar 

  33. A. Savitzky, M.J. Golay, J. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  CAS  Google Scholar 

  34. S.N. Jha, K. Narsaiah, P. Jaiswal, R. Bhardwaj, M. Gupta, R. Kumar, R. Sharma, J. Sci Horticult. 138, 171–175 (2012)

    Article  Google Scholar 

  35. Y.-Z. Feng, G. El-Masry, D.-W. Sun, A.G.M. Scannell, D. Walsh, N. Morcy, Food Chem. 138(2), 1829–1836 (2013)

    Article  CAS  Google Scholar 

  36. M. Golic, K. Walsh, P. Lawson, Appl. Spectrosc. 57(2), 139–145 (2003)

    Article  CAS  Google Scholar 

  37. M.T. Rashid, H. Ma, M.A. Jatoi, A. Wali, H.S. El-Mesery, Z. Ali, F. Sarpong, J. Food Biochem. (2019). https://doi.org/10.1111/jfbc.12809

    Article  PubMed  Google Scholar 

  38. M.T. Rashid, H. Ma, M.A. Jatoi, M.M. Hashim, A. Wali, B. Safdar, Int. J. Food Eng. (2019). https://doi.org/10.1515/ijfe-2018-0409.

    Article  Google Scholar 

  39. D.S. Sogi, M. Siddiq, K.D. Dolan, LWT Food Sci. Technol. 62(1 Part 2), 564–568 (2015)

    Article  CAS  Google Scholar 

  40. I. Guiamba, L. Ahrné, M.A. Khan, U. Svanberg, Food Bioprod. Process. 98, 320–326 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Karen de Jager for assistance with the solar dryers and the University of Venda students; Cenolia Mgomezulu, and Ntsako Mkhabela for assistance with solar drying trials. The authors are also grateful to T. Malindi and A. Zikhali for general technical assistance.

Funding

This work was supported by the University of Pretoria NRF Smart Foods Project, Project Number 170206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obiro Cuthbert Wokadala.

Ethics declarations

Conflict of interest:

All the authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wokadala, O.C., Human, C., Willemse, S. et al. Rapid non-destructive moisture content monitoring using a handheld portable Vis–NIR spectrophotometer during solar drying of mangoes (Mangifera indica L.). Food Measure 14, 790–798 (2020). https://doi.org/10.1007/s11694-019-00327-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00327-w

Keywords

Navigation