Skip to main content

Advertisement

Log in

The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberian craton

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The petrology, mineral major and trace-element concentrations, and garnet oxygen isotopic composition of low-MgO (11–16 wt%) eclogites from the Obnazhennaya kimberlite, Siberian craton, are used to infer their petrogenesis. These eclogites contain two types of compositionally distinct garnet: granular coarse garnet, and garnet exsolution (lamellae and fine-grained garnet) in clinopyroxene. The former record higher temperatures at lower pressures than the latter, which record the last stage of equilibrium at moderate pressure–temperature conditions 2.3–3.7 GPa and 855–1095 °C in the upper mantle at the time of entrainment. Although derived from the garnet stability field, these rocks have low-pressure cumulate protoliths containing plagioclase, olivine, and clinopyroxene as reflected by pronounced positive Eu and Sr anomalies in all eclogites, and low heavy rare earth element (HREE) contents in both minerals and reconstructed bulk rocks for a number of samples. Major elements, transition metals, and the HREE compositions of the reconstructed whole rocks are analogous to modern oceanic gabbro cumulates. Despite geochemical signatures supporting an oceanic crust origin, mantle-like δ18O of the garnets (5.07–5.62‰) for most samples indicates that the protoliths either did not interact with seawater or have coincidently approximately normal igneous values. Some of the eclogite xenoliths have lower SiO2 contents and depleted light REE ((Nd/Yb)N < 1) compared to modern oceanic gabbros, suggesting that they experienced partial melting. Positively inclined middle to heavy REE patterns ((Dy/Yb)N < 1) of the reconstructed bulk rocks mostly result from repeated partial melting in the eclogite stability field, based on melting model calculations. We, therefore, suggest that the Obnazhennaya low-MgO eclogites may represent the gabbroic section of subducted or foundered basaltic crust that underwent continued partial melting processes at high pressures, where garnet was the main residual phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

[Modified from Griffin et al. (1999)]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agashev AM, Pokhilenko LN, Pokhilenko NP, Shchukina EV (2018) Geochemistry of eclogite xenoliths from the Udachnaya kimberlite pipe: section of ancient oceanic crust sampled. Lithos 314–315:187–200

    Article  Google Scholar 

  • Alifirova TA, Pokhilenko LN, Ovchinnikov YI, Donnelly CL, Riches AJV, Taylor LA (2012) Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. Int Geol Rev 54(9):1071–1092

    Article  Google Scholar 

  • Alifirova TA, Pokhilenko LN, Korsakov AV (2015) Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia. Lithos 226:31–49

    Article  Google Scholar 

  • Armstrong JT (1995) CITZAF-A package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4(3):177–200

    Google Scholar 

  • Aulbach S, Arndt NT (2019) Eclogites as palaeodynamic archives: evidence for warm (not hot) and depleted (but heterogeneous) Archaean ambient mantle. Earth Planet Sci Lett 505:162–172

    Article  Google Scholar 

  • Aulbach S, Jacob DE (2016) Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos 262:586–605

    Article  Google Scholar 

  • Aulbach S, Stagno V (2016) Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44(9):751–754

    Article  Google Scholar 

  • Aulbach S, Pearson N, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the central Slave craton. Can J Petrol 48(10):1843–1873

    Article  Google Scholar 

  • Aulbach S, Höfer HE, Gerdes A (2019) High-Mg and low-Mg mantle eclogites from Koidu (West African craton) linked by Neoproterozoic ultramafic melt metasomatism of subducted Archaean plateau-like oceanic crust. J Petrol 60(4):723–754

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  Google Scholar 

  • Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2001) Geochemistry of xenolithic eclogites from West Africa, Part I: a link between low MgO eclogites and Archean crust formation. Geochim Cosmochim Acta 65(9):1499–1527

    Article  Google Scholar 

  • Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2002) Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim Cosmochim Acta 66(24):4325–4345

    Article  Google Scholar 

  • Beard BL, Fraracci KN, Taylor LA, Snyder GA, Clayton RA, Mayeda TK, Sobole NV (1996) Petrography and geochemistry and eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petrol 125:293–310

    Article  Google Scholar 

  • Beck R (1907) Untersuchungen uber einige sudafrikanische diamantlagerstatten. Z Dtsch Geol Ges 59:275–307

    Google Scholar 

  • Beyer C, Frost DJ, Miyajima N (2015) Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites. Contrib Mineral Petrol 169(2):18. https://doi.org/10.1007/s00410-015-1113-z

    Article  Google Scholar 

  • Blanco D, Kravchinsky VA, Konstantinov KM, Kabin K (2013) Paleomagnetic dating of Phanerozoic kimberlites in Siberia. J Appl Geophys 88(1):139–153

    Article  Google Scholar 

  • Caporuscio FA, Smyth JR (1990) Trace element crystal chemistry of mantle eclogites. Contrib Mineral Petrol 105:550–561

    Article  Google Scholar 

  • Carroll MR, Wyllie PJ (1990) The system tonalite-H2O at 15 kbar and the genesis of calc-alkaline magmas. Am Mineral 75(3–4):345–357

    Google Scholar 

  • Casey J (1997) Comparison of major-and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge. Proc Oceab Drill Prog Sci Result 153:181–241

    Google Scholar 

  • Chapman DS, Pollack HN (1977) Regional geotherms and lithospheric thicknesses. Geology 5:265–268

    Article  Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1968) Bonding in eight ordered clinopyroxenes isostructural with diopside. Contrib Mineral Petrol 20(1):81–85

    Article  Google Scholar 

  • Davis GL, Sobolev NV, Khar'Kiv AD (1980) New data on the age of Yakutian kimberlites obtained by the uranium-lead on zircons. Dokl Akad Nauk SSSR 254:175–180

    Google Scholar 

  • Deines P, Haggety SE (2000) Small-scale oxygen isotope variations and petrochemistry of ultradeep (%3e 300 km) and transition zone xenoliths. Geochim Cosmochim Acta 64:117–131

    Article  Google Scholar 

  • Deines P, Harris JW, Robinson DN, Gurney JJ, Shee SR (1991) Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen content of their diamonds. Geochim Cosmochim Acta 55:515–524

    Article  Google Scholar 

  • Dick HJ, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JG, Hirth G, Holm PM (2000) A long in situ section of the lower ocean crust: results of ODP leg 176 drilling at the southwest Indian Ridge. Earth Planet Sci Lett 179(1):31–51

    Article  Google Scholar 

  • Dobosi G, Kurat G, Wall F (2007) Trace element fractionation during exsolution of garnet from clinopyroxene in an eclogite xenolith from Obnazhennaya (Siberia). Geochim Comochim Acta 71(15):227–227

    Google Scholar 

  • Farver JR (2010) Oxygen and hydrogen diffusion in minerals. Rev Mineral Geochem 72(1):447–507

    Article  Google Scholar 

  • Fowler MB, Harmon RS (1990) The oxygen isotope composition of lower crustal granulite xenoliths. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. NATO ASI series (series C: mathematical and physical sciences), 311st edn. Springer, Dordrecht, pp 493–506

    Chapter  Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19(3):463–513

    Article  Google Scholar 

  • Fung AT, Haggerty SE (1995) Petrography and mineral compositions of eclogites from the Koidu Kimberlite Complex, Sierra Leone. J Geophys Res Solid Earth 100:20451–20473

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14(3):489–518

    Article  Google Scholar 

  • Gasparik T (1984) Experimentally determined stability of clinopyroxeneegarnet + corundum in the system CaO–MgO–Al2O3–SiO2. Am Mineral 69:1025–1035

    Google Scholar 

  • Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D (2009) Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30 N Mid-Atlantic-Ridge). Earth Planet Sci Lett 279(1–2):110–122

    Article  Google Scholar 

  • Gréau Y, Huang JX, Griffin WL, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim Cosmochim Acta 75(22):6927–6954

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (%3e 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res Solid Earth 86(B4):2737–2755

    Article  Google Scholar 

  • Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999) The Siberian lithosphere traverse: mantle terrances and the assembly of the Siberian Craton. Tectonophysics 310:1–35

    Article  Google Scholar 

  • Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta 63(23):4059–4080

    Article  Google Scholar 

  • Harte B (1987) Metasomatic events recorded in mantle xenoliths: an overview. Mantle xenoliths, New York, pp 625–640

    Google Scholar 

  • Harte B, Gurney JJ (1975) Evolution of clinopyroxene and garnet in an eclogite nodule from the Roberts Victor kimberlite pipe, South Africa. Phys Chem Earth 9:367–387

    Article  Google Scholar 

  • Hatton CJ (1978) The geochemistry and origin of xenoliths from the Roberts Victor mine. Ph.D thesis, University of Cape Town.

  • Herzberg C, Fyfe W, Carr M (1983) Density constraints on the formation of continental Moho and crust. Contrib Mineral Petrol 84(1):1–5

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Hills DV, Haggerty SE (1989) Petrochemistry of eclogites from the Koidu kimberlite complex, Sierra Leone. Contrib Mineral Petrol 103(4):397–422

    Article  Google Scholar 

  • Howarth GH, Barry PH, Pernet-Fisher JF, Baziotis IP, Pokhilenko NP, Pokhilenko LN, Bodnar RJ, Taylor LA, Agashev AM (2014) Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187(1):209–224

    Article  Google Scholar 

  • Huang JX, Gréau Y, Griffin WL, O'Reilly SY, Pearson NJ (2012) Multi-stage origin of Roberts Victor eclogites: progressive metasomatism and its isotopic effects. Lithos 142–143:161–181

    Article  Google Scholar 

  • Huang JX, Griffin WL, Gréau Y, Pearson NJ, O'Reilly SY, Cliff J, Martin L (2014) Unmasking xenolithic eclogites: progressive metasomatism of a key Roberts Victor sample. Chem Geol 364:56–65

    Article  Google Scholar 

  • Ireland TR, Rudnick RL, Spetsius Z (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet Sci Lett 128(3–4):199–213

    Article  Google Scholar 

  • Jacob DE, Foley SF (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos. https://doi.org/10.1016/S0024-4937(99)00034-1

    Article  Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58(23):5191–5207

    Article  Google Scholar 

  • Jacob D, Bizimis M, Salters V (2005) Lu–Hf and geochemical systematics of recycled ancient oceanic crust: evidence from Roberts Victor eclogites. Contrib Mineral Petrol 148(6):707–720

    Article  Google Scholar 

  • Jacob DE, Viljoen KS, Grassineau NV (2009) Eclogite xenoliths from kimberley, South Africa—a case study of mantle metasomatism in eclogites. Lithos 112:1002–1013

    Article  Google Scholar 

  • Jerde EA, Taylor LA, Crozaz G, Sobolev NV (1993) Exsolution of garnet within clinopyroxene of mantle eclogites: major- and trace-element chemistry. Contrib Mineral Petrol 114:148–159

    Article  Google Scholar 

  • Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim Cosmochim Acta 56(3):971–986

    Article  Google Scholar 

  • Kinny PD, Griffin B, Heaman L, Brakhfogel F, Spetsius ZV (1997) SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Russ Geol Geophys 38:97–105

    Google Scholar 

  • Kitajima K, Strickland A, Spicuzza MJ, Tenner TJ, Valley JW (2016) Improved matrix correction of δ18O analysis by SIMS for pyralspite and Cr-pyrope garnets. Goldschmidt Abstracts 1542

  • Koreshkova MY, Downes H, Levsky LK, Vladykin NV (2011) Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes. Sib J Petrol 52(10):1857–1885

    Article  Google Scholar 

  • Korolev NM, Melnik AE, Li XH, Skublov SG (2018) The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution: a review. Earth Sci Rev 185:288–300

    Article  Google Scholar 

  • Krogh REJ (1988) The garnet–clinopyroxene Fe–Mg geothermometer—a reinterpretation of existing experimental data. Contrib Miner Petrol 99(1):44–48

    Article  Google Scholar 

  • Krogh REJ (2000) The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J Metamorph Geol 18:211–219

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 5(1):1–14

    Google Scholar 

  • Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128(3–4):231–241

    Article  Google Scholar 

  • McCulloch MT, Gregory RT, Wasserburg G, Taylor HP (1981) Sm–Nd, Rb–Sr, and 18O/16O isotopic systematics in an oceanic crustal section: evidence from the Samail Ophiolite. J Geophys Res Solid Earth 86(B4):2721–2735

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Morishita T, Arai S, Green DH (2004) Possible non-melted remnants of subducted lithosphere: experimental and geochemical evidence from corundum-bearing mafic rocks in the Horoman peridotite complex. Jpn J Petrol 45(2):235–252

    Article  Google Scholar 

  • Moyen JF, Paquette JL, Ionov DA, Gannoun A, Korsakov AV, Golovin AV, Moine BN (2017) Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon U–Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton. Earth Planet Sci Lett 457:149–159

    Article  Google Scholar 

  • O'Hara M (1969) The origin of eclogite and ariegite nodules in basalt. Geol Mag 106(4):322–330

    Article  Google Scholar 

  • O'Reilly SY, Griffin WL (2013) Moho vs crust–mantle boundary: evolution of an idea. Tectonophysics 609:535–546

    Article  Google Scholar 

  • Page FZ, Kita NT, Valley JW (2010) Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry. Chem Geol 270(1):9–19

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100(1):14–48

    Article  Google Scholar 

  • Pearson NJ, O'reilly SY, Griffin WL (1991) The granulite to eclogite transition beneath the eastern margin of the Australian craton. Eur J Mineral 3(2):293–322

    Article  Google Scholar 

  • Peltonen P, Kinnunen KA, Huhma H (2002) Petrology of two diamondiferous eclogite xenoliths from the Lahtojoki kimberlite pipe, eastern Finland. Lithos 63(3):151–164

    Article  Google Scholar 

  • Perk NW, Coogan LA, Karson JA, Klein EM, Hanna HD (2007) Petrology and geochemistry of primitive lower oceanic crust from Pito deep: implications for the accretion of the lower crust at the southern east Pacific rise. Contrib Mineral Petrol 154(5):575–590

    Article  Google Scholar 

  • Presnall DC, Dixon SA, Dixon JR, Donnel THO, Brenner NL, Schrock RL, Dycus DW (1978) Liquids phase relations on the join diopside–forsterite–anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib Mineral Petrol 66:203–220

    Article  Google Scholar 

  • Purwin H, Lauterbach S, Brey GP (2013) An experimental study of the Fe oxidation states in garnet and clinopyroxene as function of temperature in the system CaO–FeO–Fe2O3–MgO–Al2O3–SiO2: implications for garnet–clinopyroxene geothermometry. Contrib Mineral Petrol 165:623–639

    Article  Google Scholar 

  • Qi Q, Taylor LA, Snyder GA, Sobolev NV (1994) Eclogites from the Obnazhennaya kimberlite pipe, Yakutia. Russ Int Geol Rev 36(10):911–924

    Article  Google Scholar 

  • Radu IB, Harris C, Moine BN, Costin G, Cotin JY (2019) Subduction relics in the subcontinental lithospheric mantle evidence from variation in the δ18O value of eclogite xenoliths from the Kaapvaal craton. Contrib Mineral Petrol 174(3):19. https://doi.org/10.1007/s00410-019-1552-z

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Article  Google Scholar 

  • Reiche M, Bautsch HJ (1985) Electron microscopical study of garnet exsolution in orthopyroxene. Phys Chem Miner 12:29–33

    Google Scholar 

  • Ridley WI, Perfit MR, Jonasson IR, Smith MF (1994) Hydrothermal alteration in oceanic ridge volcanics: a detailed study at the Galapagos fossil hydrothermal field. Geochim Cosmochim Acta 58:2477–2494

    Article  Google Scholar 

  • Rosen OM, Condie KC, Natapov LM, Nozhkin AD (1994) Chapter 10 Archean and early Proterozoic evolution of the Siberian craton: a preliminary assessment. In: Condie KC (ed) Developments in Precambrian geology, vol 11. Amsterdam, pp 411–459

  • Rosenthal A, Yaxley GM, Green DH, Hermann J, Kovacs I, Spandler C (2014) Continuous eclogite melting and variable relertilisation in upwelling. Sci Rep 4:6099

    Article  Google Scholar 

  • Rudnick RL, Barth M, Horn I, McDonough WF (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287:278–281

    Article  Google Scholar 

  • Schulze DJ (1989) Constraints on the abundance of eclogite in the upper mantle. J Geophys Res Solid Earth 94(B4):4205–4212

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117(4):394–409

    Article  Google Scholar 

  • Shatsky VS, Zedgenizov DA, Ragozin AL (2016) Evidence for a subduction component in the diamond-bearing mantle of the Siberian craton. Russ Geol Geophys 57:111–126

    Article  Google Scholar 

  • Shu Q, Brey GP, Gerdes A, Hoefer EH (2013) Geochronological and geochemical constraints on the formation and evolution of the mantle underneath the Kaapvaal craton: Lu–Hf and Sm–Nd systematics of subcalcic garnets from highly depleted peridotites. Geochim Cosmochim Acta 113:1–20

    Article  Google Scholar 

  • Shu Q, Brey GP, Hoefer HE, Zhao Z, Pearson DG (2016) Kyanite/corundum eclogites from the Kaapvaal craton: subducted troctolites and layered gabbros from the mid- to early Archean. Contrib Mineral Petrol 171(2):11

    Article  Google Scholar 

  • Shu Q, Brey GP, Pearson DG (2018) Eclogites and garnet pyroxenites from Kimberley, Kaapvaal craton, South Africa: their diverse origins and complex metasomatic signatures. Mineral Petrol 112(1):43–56

    Article  Google Scholar 

  • Smart KA, Heaman LM, Chacko T, Simonetti A, Kopylova M, Mah D, Daniels D (2009) The origin of high-MgO diamond eclogites from the Jericho Kimberlite. Can Earth Planet Sci Lett 284(3–4):527–537

    Article  Google Scholar 

  • Smart KA, Chacko T, Stachel T, Tappe S, Stern RA, Ickert RB (2012) Eclogite formation beneath the northern Slave craton constrained by diamond inclusions: oceanic lithosphere origin without a crustal signature. Earth Planet Sci Lett 319–320(15):165–177

    Article  Google Scholar 

  • Smart KA, Chacko T, Simonetti A (2014) A record of Paleoproterozoic subduction preserved in the northern Slave cratonic mantle: Sr–Pb–O isotope and trace element investigations of eclogite xenoliths from the Jericho and Muskox kimberlites. J Petrol 55(3):549–583

    Article  Google Scholar 

  • Smart KA, Cartigny P, Tappe S (2017) Lithospheric diamond formation as a consequence of methane-rich volatile flooding: an example from diamondiferous eclogite xenoliths of the Karelian craton (Finland). Geochem Cosmochim Acta 206:312–342

    Article  Google Scholar 

  • Smart KA, Tappe S, Simonetti A (2017) Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada. Chem Geol 455:98–119

    Article  Google Scholar 

  • Smelov AP, Zaitsev AI (2013) The age and localization of kimberlite magmatism in the Yakutian kimberlite province: constraints from isotope geochronology—an overview. Springer, India, pp 225–234 https://doi.org/10.1007/978-81-322-1170-9_14

    Book  Google Scholar 

  • Snyder GA, Taylor LA, Crozaz G, Halliday AN, Beard BL, Sovolev VN, Sobolev N (1997) The origin of Yakutian eclogite xenoliths. J Petrol 38(1):85–113

    Article  Google Scholar 

  • Sobolev VN, Taylor LA, Snyder GA, Sobolev NV (1994) Diamondiferous eclogites from the Udachnaya kimberlite pipe, Yakutia, Siberia. Int Geol Rev 36:42–64

    Article  Google Scholar 

  • Spengler D, Alifirova T (2019) Formation of Siberian cratonic mantle websterites from high-Mg magma. Lithos 326–327:384–396

    Article  Google Scholar 

  • Staudigel H, Davies GR, Hart SR, Marchant KM, Smith BM (1995) Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth Planet Sci Lett 130(1):169–185

    Article  Google Scholar 

  • Sun J, Liu CZ, Tappe S, Kostrovitsky SI, Wu FY, Yakovlev D, Yang YH, Yang JH (2014) Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth Planet Sci Lett 404:283–295

    Article  Google Scholar 

  • Taylor LA, Snyder GA, Keller R, Remley DA, Anand M, Wiesli R, Valley J, Sobolev NV (2003) Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contrib Mineral Petrol 145(4):424–443

    Article  Google Scholar 

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59(24):5223–5231

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Rudnick RL, Li SG (2015) Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology 43(12):1071–1074

    Article  Google Scholar 

  • Winther KT, Newton RC (1991) Experimental melting of hydrous low-K tholeiite: evidence onthe origin of Archaean cratons. Bull Geol Soc Den 39:213–228

    Google Scholar 

  • Zhang RY, Liou JG (2003) Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: origin and evolution of garnet exsolution in clinopyroxene. Am Mineral 88:1591–1600

    Article  Google Scholar 

  • Zhang L, Chen RX, Zheng YF, Hu Z, Yang Y, Xu L (2016) Geochemical constraints on the protoliths of eclogites and blueschists from north Qilian, northern Tibet. Chem Geol 421:26–43

    Article  Google Scholar 

Download references

Acknowledgements

The authors profited from continuous help and support in the laboratory and through discussions with John Valley (University of Wisconsin, SIMS), Michael Spicuzza (WiscSIMS), Liangliang Zhang (China University of geosciences, Beijing) and Qin Zhou (National Astronomical Observatories, Chinese Academic of Sciences). Constructive reviews by Sonja Aulbach and an anonymous reviewer are greatly appreciated. This study was financially supported by the major national science and technology projects (2017ZX05063002-006) and by NSF-EAR-1650260 (to RLR). Part of the analytical work and the writing of this paper was carried out by Jing Sun when she was a visiting scholar at UC Santa Barbara. Her visit was funded by the China Scholarship Council. WiscSIMS is supported by NSF-EAR-1658823 and the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Sun or Qiao Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 264 kb)

Supplementary file2 (PDF 3522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Rudnick, R.L., Kostrovitsky, S. et al. The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberian craton. Contrib Mineral Petrol 175, 25 (2020). https://doi.org/10.1007/s00410-020-1655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-1655-6

Keywords

Navigation