Skip to main content

Advertisement

Log in

Multivariate curve resolution-alternating least squares to study the simultaneous release of Sumatriptan and Naproxen from the polymeric substrate

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The use of the efficient drug delivery systems in combinatorial or multi-drug treatment of complicated diseases for effective and target-specific delivery of therapeutic agents necessitates the use of the fast and reliable analytical techniques to reveal the true release profiles of the investigated drugs. The knowledge about the release kinetics of the drugs from different substrates and the effective parameters on this process can be obtained by mathematical modeling of release profiles which is a difficult and cost-effective task in multi-drug delivery processes because of the difficulty in the simultaneous determination of multiple release profiles. In this study, a kinetic-spectrophotometric analytical methodology has been proposed for the simultaneous determination of release profiles of Sumatriptan and Naproxen, two widely used drugs in migraine treatment which use MCR-ALS for the decomposition of the release data matrices. The obtained release profiles have been subjected to mathematical modeling for further determination of release mechanisms. It has been shown that the MCR-ALS effectively decomposes the data matrices (more than 97% of explained variance) and Korsmeyer–Peppas and Ritger–Peppas models can well describe the release behavior of drugs from the investigated substrate (R2 > 0.99 for both compounds and acceptable low SSE values).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Fu, W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7(4), 429–444 (2010)

    Article  CAS  Google Scholar 

  2. K. Adibkia, S. Hamedeyazdan, Y. Javadzadeh, Drug release kinetics and physicochemical characteristics of floating drug delivery systems. Expert Opin. Drug Deliv. 8(7), 891–903 (2011)

    Article  CAS  Google Scholar 

  3. N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62(1), 83–99 (2010)

    Article  CAS  Google Scholar 

  4. S. Freiberg, X.X. Zhu, Polymer microspheres for controlled drug release. Int. J. Pharm. 282(1–2), 1–8 (2004)

    Article  CAS  Google Scholar 

  5. P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002)

    Article  CAS  Google Scholar 

  6. L. Wei, C. Cai, J. Lin, T. Chen, Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials 30(13), 2606–2613 (2009)

    Article  CAS  Google Scholar 

  7. J. Kost, R. Langer, Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64, 327–341 (2012)

    Article  Google Scholar 

  8. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release. Chem. Rev. 99(11), 3181–3198 (1999)

    Article  CAS  Google Scholar 

  9. M. SinnáAw, A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 48(27), 3348–3350 (2012)

    Article  CAS  Google Scholar 

  10. S. Aryal, C.M. Hu, L. Zhang, Combinatorial drug conjugation enables nanoparticle dual-drug delivery. Small 6(13), 1442–1448 (2010)

    Article  CAS  Google Scholar 

  11. K. Karthikeyan, S. Guhathakarta, R. Rajaram, P.S. Korrapati, Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int. J. Pharm. 438(1–2), 117–122 (2012)

    Article  CAS  Google Scholar 

  12. A. Hadjitheodorou, G. Kalosakas, Analytical and numerical study of diffusion-controlled drug release from composite spherical matrices. Mater. Sci. Eng., C 42, 681–690 (2014)

    Article  CAS  Google Scholar 

  13. W. Xiao, X. Zeng, H. Lin, K. Han, H.Z. Jia, X.Z. Zhang, Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs. Chem. Commun. 51(8), 1475–1478 (2015)

    Article  CAS  Google Scholar 

  14. R. Salehi, S. Rasouli, H. Hamishehkar, Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int. J. Pharm. 487(1–2), 274–284 (2015)

    Article  CAS  Google Scholar 

  15. M. Barzegar-Jalali, K. Adibkia, H. Valizadeh, M.R. Shadbad, A. Nokhodchi, Y. Omidi, G. Mohammadi, S.H. Nezhadi, M. Hasan, Kinetic analysis of drug release from nanoparticles. J. Pharm. Pharm. Sci. 11(1), 167–177 (2008)

    Article  CAS  Google Scholar 

  16. S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 67(3), 217–223 (2010)

    PubMed  CAS  Google Scholar 

  17. J. Siepmann, F. Siepmann, Modeling of diffusion controlled drug delivery. J. Control. Release 161(2), 351–362 (2012)

    Article  CAS  Google Scholar 

  18. S. Fredenberg, M. Wahlgren, M. Reslow, A. Axelsson, The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. Int. J. Pharm. 415(1–2), 34–52 (2011)

    Article  CAS  Google Scholar 

  19. H.C. Shin, A.W. Alani, D.A. Rao, N.C. Rockich, G.S. Kwon, Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J. Control. Release 140(3), 294–300 (2009)

    Article  CAS  Google Scholar 

  20. W.N. Sivak, J. Zhang, S. Petoud, E.J. Beckman, Simultaneous drug release at different rates from biodegradable polyurethane foams. Acta Biomater. 5(7), 2398–2408 (2009)

    Article  CAS  Google Scholar 

  21. D.P. Patel, P. Sharma, M. Sanyal, P. Singhal, P.S. Shrivastav, Challenges in the simultaneous quantitation of sumatriptan and naproxen in human plasma: application to a bioequivalence study. J. Chromatogr. B 902, 122–131 (2012)

    Article  CAS  Google Scholar 

  22. A. Vaitkus, R. Macaitytė, I. Kiudulaitė, KAMST–Simple method for patients with migraine screening. Med. Hypotheses 128, 21–24 (2019)

    Article  Google Scholar 

  23. G.P. Hansraj, S.K. Singh, P. Kumar, Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int. J. Biol. Macromol. 81, 467–476 (2015)

    Article  CAS  Google Scholar 

  24. P. Vrbata, P. Berka, D. Stránská, P. Doležal, M. Musilová, L. Čižinská, Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. Int. J. Pharm. 457(1), 168–176 (2013)

    Article  CAS  Google Scholar 

  25. B.J. Sanghavi, P.K. Kalambate, S.P. Karna, A.K. Srivastava, Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta 120, 1–9 (2014)

    Article  CAS  Google Scholar 

  26. J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometr. Intell. Lab. Syst. 76(1), 101–110 (2005)

    Article  CAS  Google Scholar 

  27. J. Jaumot, A. de Juan, R. Tauler, MCR-ALS GUI 2.0: new features and applications. Chemometr. Intell. Lab. Syst. 140, 1–12 (2015)

    Article  CAS  Google Scholar 

  28. R. Tauler, Multivariate curve resolution applied to second order data. Chemometr. Intell. Lab. Syst. 30(1), 133–146 (1995)

    Article  CAS  Google Scholar 

  29. M. Garrido, F.X. Rius, M.S. Larrechi, Multivariate curve resolution–alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes. Anal. Bioanal. Chem. 390(8), 2059–2066 (2008)

    Article  CAS  Google Scholar 

  30. R. Tauler, M. Maeder, A. de Juan, Multiset Data Analysis: Extended Multivariate Curve Resolution, Comprehensive Chemometrics (Elsevier, Amsterdam, 2009)

    Google Scholar 

  31. P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5(1), 23–36 (1987)

    Article  CAS  Google Scholar 

  32. N. Peppas, Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 60(4), 110–111 (1985)

    PubMed  CAS  Google Scholar 

  33. M.L. Bruschi, Mathematical Models of Drug Release, Strategies to Modify the Drug Release from Pharmaceutical Systems (Woodhead Publishing, Sawston, 2015)

    Google Scholar 

  34. S.M. Henry, M.E. El-Sayed, C.M. Pirie, A.S. Hoffman, P.S. Stayton, pH-responsive poly (styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 7(8), 2407–2414 (2006)

    Article  CAS  Google Scholar 

  35. M.A. Filippa, E.I. Gasull, Experimental determination of naproxen solubility in organic solvents and aqueous binary mixtures: interactions and thermodynamic parameters relating to the solvation process. J. Mol. Liq. 198, 78–83 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bahram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadashi, R., Bahram, M. & Moghtader, M. Multivariate curve resolution-alternating least squares to study the simultaneous release of Sumatriptan and Naproxen from the polymeric substrate. J IRAN CHEM SOC 17, 953–962 (2020). https://doi.org/10.1007/s13738-019-01828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01828-7

Keywords

Navigation