Skip to main content

Advertisement

Log in

Supramolecular inorganic chemistry leading to functional materials

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Functional inorganic materials are very important today to meet the needs of our society. The most demanding needs are sustainable and clean energy (it would be nice if that can be achieved from water splitting), smart materials for sensing toxic volatile as well as water-soluble substances (health care) and efficient catalysts that can cycle multiple times without deterioration for useful chemical reactions. Supramolecular chemistry, that plays a vital role to design and synthesize such functional molecules, controls over the intermolecular interactions, thereby the molecular recognition processes leading to molecular functions, e.g., sensing, catalysis, etc. This article deals with inorganic supramolecular chemistry of a number of mono-nuclear coordination complexes to selected di-nuclear systems through trinuclear metal basic carboxylates, mostly in their solid-state, leading to the functional inorganic materials. We have demonstrated that some of the very old inorganic systems can be explored in the light of supramolecular chemistry to describe them as functional materials, which have potential in serving our society to some extent.

Graphical abstract

This work aims to discuss the potential applications of some of the age-old chemical systems which can be broadly classified as mononuclear complexes, dinuclear systems and trinuclear clusters. These systems can be perceived as a seedling which has the potential to grow into a tree, provided, it is supplied with all the resources and well taken care of. By the virtue of extensive research going around the world, these versatile systems have evolved through the years to grow into a field with wide-ranging applications, but still a lot remains to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Scheme 3
Scheme 4

Copyright (2012) American Chemical Society.

Figure 3

Copyright (2012) American Chemical Society.

Figure 4
Figure 5
Scheme 5

Copyright (2006) American Chemical Society.

Scheme 6

Copyright (2006) American Chemical Society.

Figure 6

Copyright (2006) American Chemical Society.

Scheme 7
Scheme 8

Reprinted with permission from Ref.5 Copyright (2008) American Chemical Society.

Scheme 9

Reprinted with permission from Ref.5 Copyright (2008) American Chemical Society.

Figure 7

Reprinted with permission from Ref.5 Copyright (2008) American Chemical Society.

Figure 8
Figure 9
Scheme 10
Scheme 11
Figure 10
Figure 11
Scheme 12

Reprinted with permission from Ref.73 Copyright (2017) American Chemical Society.

Figure 12

Copyright (2017) American Chemical Society.

Scheme 13
Scheme 14
Scheme 15
Figure 13
Figure 14
Figure 15

Copyright (2005) American Chemical Society.101

Figure 16
Figure 17

Copyright (2018) American Chemical Society.104

Figure 18

Copyright (2018) American Chemical Society.104

Figure 19
Figure 20
Scheme 16
Scheme 17
Figure 21
Scheme 18

Copyright (2006) American Chemical Society.

Figure 22

Copyright (2006) American Chemical Society.

Figure 23

Similar content being viewed by others

References

  1. Singh N and Gupta S 1999 Solid State Electrical Conductance Properties of Some New Bimetallic Salts and Heterometallic Coordination Polymers Derived from Bis (1-Ethoxycarbonyl-1-Cyanoethylene-2,2-Dithiolato) Cuprate(II) Ion Synth. Met. 107 167

    CAS  Google Scholar 

  2. Singh N and Gupta S 2000 Magnetic and Electrical Properties of New Inorganic Complex Based Materials Derived from Bis(1-Ethoxycarbonyl-1-Cyanoethylene-2,2-Dithiolato)Metalate(II) Ions Int. J. Inorg. Mater. 2 427

    CAS  Google Scholar 

  3. Madhu V and Das S K 2004 Near-IR Absorption Due to Supramolecular Electronic Interaction in an Extended 3D Hydrogen-Bonding Network Material: Synthesis, Crystal Structure and Properties of [4,4′-H2bpy][Cu(Mnt)2] Polyhedron 23 1235

  4. Picciani P H S, Souza F G, Comerlato N M and Soares B G 2007 A Novel Material Based on Polyaniline Doped with [Cs][In(Dmit)2], (Cesium) [Bis(1,3-Dithiole-2-Thione-4,5-Dithiolato)Indium (III)] Synth. Met. 157 1074

    CAS  Google Scholar 

  5. Madhu V and Das S K 2008 New Series of Asymmetrically Substituted Bis (1,2-Dithiolato)-Nickel(III) Complexes Exhibiting Near IR Absorption and Structural Diversity Inorg. Chem. 47 5055

    CAS  PubMed  Google Scholar 

  6. Ouahab L 1998 Coordination Complexes in Conducting and Magnetic Molecular Materials Coord. Chem. Rev. 178 1501

    Google Scholar 

  7. Kato R, Watanabe E, Fujiwara M, Kashimura Y, Okano Y and Yamaura J-I 2000 Conducting Properties of Assembled Metal Complexes Mol. Cryst. Liq. Cryst. 343 1

    CAS  Google Scholar 

  8. Kishore R, Tripuramallu B K, Durgaprasad G and Das S K 2011 Ion-Pair Charge Transfer Complex with near-IR Absorption: Synthesis, Crystal Structure and Properties of [Hb]2[Cu(Mnt)2] (Hb = 1-(4-((1H-Imidazol-1-Yl)Methyl)Benzyl)-1H-Imidazol-3-Ium) J. Mol. Struct. 990 37

    CAS  Google Scholar 

  9. Hiraga H, Miyasaka H, Clerac R, Fourmigue M and Yamashita M 2009 [ MIII(Dmit)2] -Coordinated MnIII Salen-Type Dimers (MIII = Ni III, AuIII; Dmit2− = 1,3-Dithiol-2-Thione-4,5-Dithiolate): Design of Single-Component Conducting Single-Molecule Magnet-Based Materials Inorg. Chem. 48 2887

    CAS  PubMed  Google Scholar 

  10. Cassoux P 1999 Molecular (Super)Conductors Derived from Bis-Dithiolate Metal Complexes Coord. Chem. Rev. 185–186 213

    Google Scholar 

  11. Anyfantis G C, Papavassiliou G C, Terzis A, Raptopoulou C P, Weng Y F, Yoshino H and Murata K 2006 Preparation and Characterization of Some Nickel 1,2-Dithiolene Complexes as Single-Component Semiconductors Zeitschrift fur Naturforsch. - B 61 1007

    CAS  Google Scholar 

  12. da Cruz A G B, Wardell J L and Rocco A M 2008 Hybrid Organic-Inorganic Materials Based on Polypyrrole and 1,3-Dithiole-2-Thione-4,5-Dithiolate (DMIT) Containing Dianions J. Mater. Sci. 43 5823

    Google Scholar 

  13. Pushie M J, Cotelesage J J and George G N 2014 Molybdenum and Tungsten Oxygen Transferases - Structural and Functional Diversity within a Common Active Site Motif Metallomics 6 15

    CAS  PubMed  Google Scholar 

  14. Ouahab L 1997 Organic/Inorganic Supramolecular Assemblies and Synergy between Physical Properties Chem. Mater. 9 1909

    CAS  Google Scholar 

  15. Madhu V and Das S K 2014 Diverse Supramolecular Architectures Having Well-Defined Void Spaces Formed from a Pseudorotaxane Cation: Influential Role of Metal Dithiolate Coordination Complex Anions Cryst. Growth Des. 14 2343

    CAS  Google Scholar 

  16. Madhu V and Das S K 2011 Neutral Coordination Polymers Based on a Metal-Mono(Dithiolene) Complex: Synthesis, Crystal Structure and Supramolecular Chemistry of [Zn(Dmit)(4,4′-Bpy)]n, [Zn(Dmit)(4,4′-Bpe)]n and [Zn(Dmit)(Bix)]n (4,4′-Bpy = 4,4′-Bipyridine, 4,4′-Bpe = trans-1,2-bis(4-pyridyl)ethene, bix = 1,4-bis(imidazole-1-ylmethyl)-benzene Dalton Trans. 40 12901

    CAS  PubMed  Google Scholar 

  17. Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J and Feng X 2015 Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution Angew. Chem. Int. Ed. 54 12058

    CAS  Google Scholar 

  18. Hubbard A L, Davidson G J E, Patel R H, Wisner J A and Loeb S J 2004 Host-Guest Interactions Template: The Synthesis of a [3]Catenane Chem. Commun. 138

  19. Loeb S J and Wisner J A 1998 1,2-Bis(4,4′-Dipyridinium)Ethane: A Versatile Dication for the Formation of [2]Rotaxanes with Dibenzo-24-Crown-8 Ether Chem. Commun. 2757

  20. Loeb S J and Wisner J A 2000 [3]Rotaxanes Employing Multiple 1,2-Bis(Pyridinium)Ethane Binding Sites and Dibenzo-24-Crown-8 Ethers Chem. Commun. 845

  21. Loeb S J and Wisner J A 1998 A New Motif for the Self-Assembly of [2] Pseudorotaxanes; 1,2-Bis(Pyridinium)Ethane Axles and [24]Crown-8 Ether Wheels Angew. Chem. Int. Ed. 37 2838

    CAS  Google Scholar 

  22. Hu X-Y, Zhang P, Wu X, Xia W, Xiao T, Jiang J, Lin C and Wang L 2012 Pillar[5]Arene-Based Supramolecular Polypseudorotaxanes Constructed from Quadruple Hydrogen Bonding Polym. Chem. 3 3060

    CAS  Google Scholar 

  23. Tiburcio J, Davidson G J E and Loeb S J 2002 Pseudo-Polyrotaxanes Based on a Protonated Version of the 1,2-Bis(4,4′-Bipyridinium)Ethane-24-Crown-8 Ether Motif Chem. Commun. 1282

  24. Kishore R, Tripuramallu B K and Das S K 2015 Significant Role of Supramolecular Interactions on Conformational Modulation of Flexible Organic Cation Receptors in a Metal-Bis(Dithiolate) Coordination Complex Matrix Cryst. Growth Des. 15 4459

    CAS  Google Scholar 

  25. Belo D, Figueira M J, Santos I C, Gama V, Pereira L C, Henriques R T and Almeida M 2005 Synthesis and Characterization of Copper Complexes with the 2,3-Dicyano-5,6-Dimercaptopyrazine Ligand: Magnetic Properties of a Ferrocenium Salt Polyhedron 24 2035

    CAS  Google Scholar 

  26. Venkatalakshmi N, Varghese B, Lalitha S, Williams R F X and Manoharan P T 1989 Crystal, Molecular Structure, and Magnetic Properties of Bis(Tetra-n-Butylammonium)Bis(4-(Dicyanomethylene)-1, 2-Dimercaptocyclopent-1-Ene-3, 5-Dionato-S, S′)Cuprate(II), [n-Bu4N]2[Cu(Dcmdtcroc)2]: A Dimer with Weak Ferromagnetic Coupling J. Am. Chem. Soc. 111 5748

    CAS  Google Scholar 

  27. Snaathorst D, Doesburg H M, Perenboom J A A J and Keijzers C P 1981 Structural, EPR, and Magnetic Studies of a Nonplanar Copper(II) Maleonitriledithiolate Complex Inorg. Chem. 20 2526

    CAS  Google Scholar 

  28. Hunter G and Weakley T J R 1983 Crystal and Molecular Structure of Polymeric Tetraphenylarsonium Bis(1,2-Dicyanoethene-1,2-Dithiolato) Bismuthate(III) J. Chem. Soc. Dalton Trans. 1067

    Google Scholar 

  29. Ren X M, Ni Z P, Noro S, Akutagawa T, Nishihara S, Nakamura T, Sui Y X and Song Y 2006 Diversities of Coordination Geometry at Cu2+ Center in the Bis(Maleonitriledithiolato)Cuprate Complexes: Syntheses, Magnetic Properties, X-Ray Crystal Structural Analyses, and DFT Calculations Cryst. Growth Des. 6 2530

    CAS  Google Scholar 

  30. Lindqvist O, Andersen L, Sieler J, Steimecke G and Hoyer E 1982 Nickel Chelates of Trithione- and Isotrithionedithiolate - a New Class of 1,2-Dithiolates. Part III. The Crystal Structure of Tetrabutylammonium Bis(Isotrithionedithiolato)Nickelate(III) Acta Chem. Scand. A 36 855

    CAS  Google Scholar 

  31. Huertas S, Hissler M, McGarrah J E, Lachicotte R J and Eisenberg R 2001 Syntheses and Structural Characterization of Luminescent Platinum(II) Complexes Containing Di-Tert-Butylbipyridine and New 1,1-Dithiolate Ligands Inorg. Chem. 40 1183

    CAS  PubMed  Google Scholar 

  32. Kishore R and Das S K 2012 Diversities of Coordination Geometry Around the Cu2+ Centre in Bis (Maleonitriledithiolato) Metalate Complex Anions: Geometry Controlled by Varying the Alkyl Chain Length of Imidazolium Cations Cryst. Growth Des. 12 3684

    CAS  Google Scholar 

  33. Madhu V, Sabbani S, Kishore R, Naik I K and Das S K 2015 Mechanical Motion in the Solid State and Molecular Recognition: Reversible Cis–trans Transformation of an Organic Receptor in a Solid–liquid Crystalline State Reaction Triggered by Anion Exchange CrystEngComm 17 3219

    CAS  Google Scholar 

  34. Madhu V and Das S K 2006 A New Approach to Functionalize an Organic Compound through the Influence of Metal Bis(Dithiolene) Complexes Leading to Ion-Pair Compounds Exhibiting Strong Emission at Room Temperature in the Visible Region Inorg. Chem. 45 10037

    CAS  PubMed  Google Scholar 

  35. Marks D R, Phillips D J and Redfern J P 1967 Arylamine Co-Ordination Complexes. Part I. Nickel(II) Complexes Containing Uni- and Bi-Dentate o-Phenylenediamine and 4-Methyl-o-Phenylenediamine J. Chem. Soc. A 1464

  36. Marks D R, Phillips D J and Redfern J P 1968 Arylamine Co-Ordination Complexes. Part III. o-Phenylenediamine Complexes of Cobalt(II), Nickel (II), and Zinc(II) Containing Polyatomic Anions J. Chem. Soc. A 2013

  37. Duff E J 1968 Complexes of the Benzenediamines. Part I. Some Complexes of Cobalt(II), Nickel(II), and Copper(II) with Benzene-1.2-Diamine J. Chem. Soc. A 434

  38. Supriya S and Das S K 2011 Solid-to-Solid Formation at the Solid – Liquid Interface Leading to a Chiral Coordination Polymer from an Achiral Monomer Chem. Commun. 47 2062

    CAS  Google Scholar 

  39. Yamaguchi K, Akagi F, Fujinami S, Suzuki M, Shionoya M and Suzuki S 2001 Hydrolysis of Phosphodiester with Hydroxo- or Carboxylate-Bridged Dinuclear Ni(II) and Cu(II) Complexes Chem. Commun. 375

  40. Wang F, Becker S, Minier M A, Loas A, Jackson M N and Lippard S J 2017 Tuning the Diiron Core Geometry in Carboxylate-Bridged Macrocyclic Model Complexes Affects Their Redox Properties and Supports Oxidation Chemistry Inorg. Chem. 56 11050

    CAS  PubMed  Google Scholar 

  41. Trehoux A, Mahy J-P and Avenier F 2016 A Growing Family of O2 Activating Dinuclear Iron Enzymes with Key Catalytic Diiron(III)-Peroxo Intermediates: Biological Systems and Chemical Models Coord. Chem. Rev. 322 142

    CAS  Google Scholar 

  42. Sankaralingam M and Palaniandavar M 2014 Diiron(III) Complexes of Tridentate 3 N Ligands as Functional Models for Methane Monooxygenases: Effect of the Capping Ligand on Hydroxylation of Alkanes Polyhedron 67 171

    CAS  Google Scholar 

  43. Pathak C, Gupta S K, Gangwar M K, Prakasham A P and Ghosh P 2017 Modeling the Active Site of the Purple Acid Phosphatase Enzyme with Hetero-Dinuclear Mixed Valence M(II)–Fe(III) [M = Zn, Ni, Co, and Cu] Complexes Supported over a [N6O] Unsymmetrical Ligand ACS Omega 2 4737

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kryatov S V, Nazarenko A Y, Robinson P D and Rybak-Akimova E V 2000 A Dinuclear Iron(III) Complex with a Bridging Urea Anion: Implications for the Urease Mechanism Chem. Commun. 921

  45. Jarenmark M, Carlsson H and Nordlander E 2007 Asymmetric Dinuclear Metal Complexes as Models for Active Sites in Hydrolases and Redox Enzymes Comptes Rendus Chim. 10 433

    CAS  Google Scholar 

  46. Ibrahim M M 2011 Synthesis and Spectroscopic Characterization of Zinc(II) and Copper(II) Complexes of N,N-Bis(2-Picolyl)Glycine as Structural Phosphotriestrase Models: The Catalyzed Detoxification of Paraoxon J. Mol. Struct. 990 227

    CAS  Google Scholar 

  47. Dong Y, Fujii H, Hendrich M P, Leising R A, Pan G, Randall C R, Wilkinson E C, Zang Y, Que L, Fox B G, Kauffmann K and Münck E 1995 A High-Valent Nonheme Iron Intermediate. Structure and Properties of [Fe2(μ-O)2(5-Me-TPA)2] (ClO4)3 J. Am. Chem. Soc. 117 2778

    CAS  Google Scholar 

  48. Coggins M K, Toledo S and Kovacs J A 2013 Isolation and Characterization of a Dihydroxo-Bridged Iron(III,III)(μ-OH)2 Diamond Core Derived from Dioxygen Inorg. Chem. 52 13325

    CAS  PubMed  Google Scholar 

  49. Citek C, Lin B, Phelps T E, Wasinger E C and Stack T D P 2014 Primary Amine Stabilization of a Dicopper (III) Bis (μ-Oxo) Species: Modeling the Ligation in PMMO J. Am. Chem. Soc. 136 14405

    CAS  PubMed  Google Scholar 

  50. Carlsson H, Haukka M and Nordlander E 2004 Structural and Functional Models of the Active Site of Zinc Phosphotriesterase Inorg. Chem. 43 5681

    CAS  PubMed  Google Scholar 

  51. Blakeley R L, Treston A, Andrews R K and Zerner B 1982 Nickel(II)-Promoted Ethanolysis and Hydrolysis of N-(2-Pyridylmethyl)Urea. A Model for Urease J. Am. Chem. Soc. 104 612

    CAS  Google Scholar 

  52. Bernhardt P V, Bosch S, Comba P, Gahan L R, Hanson G R, Mereacre V, Noble C J, Powell A K, Schenk G and Wadepohl H 2015 An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs) Inorg. Chem. 54 7249

    CAS  PubMed  Google Scholar 

  53. Barrios A M and Lippard S J 2000 Interaction of Urea with a Hydroxide-Bridged Dinuclear Nickel Center: An Alternative Model for the Mechanism of Urease J. Am. Chem. Soc. 122 9172

    CAS  Google Scholar 

  54. Rej S, Tsurugi H and Mashima K 2018 Multiply-Bonded Dinuclear Complexes of Early-Transition Metals as Minimum Entities of Metal Cluster Catalysts Coord. Chem. Rev. 355 223

    CAS  Google Scholar 

  55. Liu T, Chai H, Wang L and Yu Z 2017 Exceptionally Active Assembled Dinuclear Ruthenium(II)-NNN Complex Catalysts for Transfer Hydrogenation of Ketones Organometallics 36 2914

    CAS  Google Scholar 

  56. Hung M-U, Yang S-T, Ramanathan M and Liu S-T 2018 Hydrogenation of Nitroarenes Catalyzed by a Dipalladium Complex Appl. Organomet. Chem. 32 1

    Google Scholar 

  57. Gu S, Du J, Huang J, Guo Y, Yang L, Xu W and Chen W 2017 Unsymmetrical NCN-Pincer Mononuclear and Dinuclear Nickel(II) Complexes of N-Heterocyclic Carbene (NHC): Synthesis, Structure and Catalysis for Suzuki–Miyaura Cross-Coupling Dalton Trans. 46 586

    CAS  PubMed  Google Scholar 

  58. Powers I G, Andjaba J M, Luo X, Mei J and Uyeda C 2018 Catalytic Azoarene Synthesis from Aryl Azides Enabled by a Dinuclear Ni Complex J. Am. Chem. Soc. 140 4110

    CAS  PubMed  Google Scholar 

  59. Crawley M R, Friedman A E, Cook T R 2018 Characterization, and Catalytic Studies of Dinuclear d8 Metal − Phosphazane Complexes Inorg. Chem. 57 5692

    CAS  PubMed  Google Scholar 

  60. Rhaman M M, Hasan M H, Alamgir A, Xu L, Powell D R, Wong B M, Tandon R and Hossain M A 2018 Highly Selective and Sensitive Macrocycle-Based Dinuclear Foldamer for Fluorometric and Colorimetric Sensing of Citrate in Water Sci. Rep. 8 1

    CAS  Google Scholar 

  61. Mesquita L M, André V, Esteves C V, Palmeira T, Berberan-Santos M N, Mateus P and Delgado R 2016 Dinuclear Zinc(II) Macrocyclic Complex as Receptor for Selective Fluorescence Sensing of Pyrophosphate Inorg. Chem. 55 2212

    CAS  PubMed  Google Scholar 

  62. Han M S and Kim D H 2002 Naked-Eye Detection of Phosphate Ions in Water at Physiological pH: A Remarkably Selective and Easy-to-Assemble Colorimetric Phosphate-Sensing Probe Angew. Chem. Int. Ed. 41 3809

    CAS  Google Scholar 

  63. Beer P D 1998 Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species Acc. Chem. Res. 31 71

    CAS  Google Scholar 

  64. Ralf R and Mendel F B 2006 Cell Biology of Molybdenum Biochim. Biophys. Acta 1763 621

    Google Scholar 

  65. Kisker C, Schindelin H and Rees D C 1997 Molybdenum-Cofactor Containing Enzymes: Structure and Mechanism Annu. Rev. Biochem 66 233

    CAS  PubMed  Google Scholar 

  66. Durgaprasad G and Das S K 2012 1,2-Ene Dithiolate Bridged Diiron Carbonyl-Phosphine and -Phosphite Complexes in Relevance to the Active Site of [FeFe]-Hydrogenases: Synthesis, Characterization and Electrocatalysis J. Organomet. Chem. 717 29

    CAS  Google Scholar 

  67. Durgaprasad G, Bolligarla R and Das S K 2012 Synthesis, Crystal Structure and Electrocatalysis of 1,2-Ene Dithiolate Bridged Diiron Carbonyl Complexes in Relevance to the Active Site of [ FeFe ] -Hydrogenases J. Organomet. Chem. 706–707 37

    Google Scholar 

  68. Durgaprasad G, Bolligarla R and Das S K 2011 Synthesis, Structural Characterization and Electrochemical Studies of [Fe2(μ-L)(CO)6] and [Fe2(μ-L)(CO)5(PPh3)] (L = Pyrazine-2,3-Dithiolate, Quinoxaline-2,3-Dithiolate and Pyrido[2,3-b]Pyrazine-2,3-Dithiolate): Towards Modeling the Active Site of [FeFe]–Hydrogenase J. Organomet. Chem. 696 3097

    CAS  Google Scholar 

  69. Barba-Bon A, Costero A M, Gil S, Parra M, Soto J, Martínez-Máñez R and Sancenón F 2012 A New Selective Fluorogenic Probe for Trivalent Cations Chem. Commun. 48 3000

    CAS  Google Scholar 

  70. Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J and Rurack K 2005 On the Development of Sensor Molecules That Display FeIII- Amplified Fluorescence J. Am. Chem. Soc. 127 13522

    CAS  PubMed  Google Scholar 

  71. Luck A N, Bobst C E, Kaltashov I A and Mason A B 2013 Human Serum Transferrin: Is There a Link between Autism, High Oxalate and Iron Deficiency Anemia Biochemistry 52 8333

    CAS  PubMed  Google Scholar 

  72. Shi H, Shen S, Sun H, Liu Z and Li L 2007 Oxidation of L-Serine and L-Threonine by Bis(Hydrogen Periodato)Argentate(III) Complex Anion: A Mechanistic Study J. Inorg. Biochem. 101 165

    CAS  PubMed  Google Scholar 

  73. Kumar G, Guda R, Husain A, Bodapati R and Das S K 2017 A Functional Zn(II) Metallacycle Formed from an N-Heterocyclic Carbene Precursor: A Molecular Sensor for Selective Recognition of Fe3+and IO4− Ions Inorg. Chem. 56 5017

    CAS  PubMed  Google Scholar 

  74. Yazdanbakhsh M, Alizadeh M H, Khorramdel H Z and Frank W 2007 Synthesis, Characterization and Crystal Structure of Novel Mixed Bridged Trinuclear Oxo-Centered Iron(III), Chromium(III) Complexes Containing Terminal Unsaturated Carboxylato and Acrylic Acid Dimer Anion Ligands Zeitschrift fur Anorg. und Allg. Chemie 633 1193

    CAS  Google Scholar 

  75. Tavakkoli H, Ghaemi A and Mohave F 2013 Full Length Research Paper Synthesis and Characterization of Two New Oxo-Centered Trinuclear Complexes of Manganese and Iron Int. J. Sci. Res. Knowl. 1 182

    Google Scholar 

  76. Chang S C and Jeffrey G A 1970 The Crystal Structure of a Basic Chromium Acetate Compound, [OCr3(CH3COO)6·3H2O]+Cl·6H2O, Having Feeble Paramagnetism Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26 673

    CAS  Google Scholar 

  77. Anzenhofer K and Boer J J De 1969 The Crystal Structure of the Basic Iron Acetate Fe3(CH3COO)6O·3H2O]+ClO4− Recl. des Trav. Chim. des Pays-Bas 88 286

    CAS  Google Scholar 

  78. Supriya S and Das S K 2003 A Cyclic (H2O)4 Cluster Characterized in the Solid State Disappears on Heating and Regenerates from Water Vapor: A Supramolecular Reversible Gas–solid Reaction New J. Chem. 27 1568

    CAS  Google Scholar 

  79. Boudalis A K, Sanakis Y, Raptopoulou C P, Terzis A, Tuchagues J P and Perlepes S P 2005 A Trinuclear Cluster Containing the {Fe33-O)7+ core: Structural, Magnetic and Spectroscopic (IR, Mössbauer, EPR) Studies Polyhedron 24 1540

    CAS  Google Scholar 

  80. Shweky I, Pence L E, Papaefthymiou G C, Sessoli R, Yun J W, Bino A and Lippard S J 1997 A Hexairon(III) Complex with Three Nonplanar Η2- μ4-Peroxo Ligands Bridging Two Basic Iron Acetate Units J. Am. Chem. Soc. 119 1037

    CAS  Google Scholar 

  81. Gao F-X, Gu W, Yang Y-S, Ma X-F, Qian J and Yan S-P 2008 An Oxo-Centered Carboxylate-Bridged Trinuclear Complex: Synthesis, Crystal Structure, and Magnetic Properties of [Cr33-O)(HL)2(H2O)3](ClO4)3 J. Coord. Chem. 61 1455

    CAS  Google Scholar 

  82. Pozzi C, Ciambellotti S, Bernacchioni C, Di Pisa F, Mangani S and Turano P 2017 Chemistry at the Protein–mineral Interface in L-Ferritin Assists the Assembly of a Functional (μ3-Oxo)Tris[(μ2-Peroxo)] Triiron(III) Cluster Proc. Natl. Acad. Sci. 114 2580

    CAS  PubMed  Google Scholar 

  83. Shova S, Lazarescu A, Gdaniec M, Simonov Y and Turta C 2008 Mixed-Ligands μ3-Oxo Trinuclear Carboxylates [Fe3O(CH2BrCOO)1.5(CH2ClCOO)4.5 (H2O)3]Br0.75Cl0.255H2O and [Fe3O(BrCH2COO)6(H2O)3]NO3·2.63H2O Chem. J. Mold. Gen. Ind. Ecol. Chem. 3 86

    Google Scholar 

  84. Anson C E, Bourke J P, Cannon R D, Jayasooriya U A, Molinier M and Powell A K 1997 Crystal Structures of the Isomorphous Prototypic Oxo-Centered Trinuclear Complexes [Cr3O(OOCCH3)6(H2O)3]Cl·6H2O and [Fe3O(OOCCH3)6(H2O)3]Cl·6H2O Inorg. Chem. 36 1265

    CAS  PubMed  Google Scholar 

  85. Supriya S and Das S K 2003 Small Water Clusters in Crystalline Hydrates J. Clust. Sci. 14 337

    CAS  Google Scholar 

  86. Supriya S, Manikumari S, Raghavaiah P and Das S K 2003 A Cyclic Supramolecular (H2O)4 Cluster in an Unusual Fe3 Complex That Aggregates to {Fe3}n with a Zig-Zag Chainlike Structure New J. Chem. 27 218

    CAS  Google Scholar 

  87. Ludwig R 2001 Water: From Clusters to the Bulk Angew. Chem. Int. Ed. 40 1808

    CAS  Google Scholar 

  88. Tsuchiya M, Tashiro T and Shigihara A 2004 Water Clusters in Gas Phases Studied by Liquid Ionization Mass Spectrometry J. Mass Spectrom. Soc. Jpn. 52 1

    CAS  Google Scholar 

  89. Ju S-P, Yang S-H and Liao M-L 2006 Study of Molecular Behavior in a Water Nanocluster: Size and Temperature Effect J. Phys. Chem. B 110 9286

    CAS  PubMed  Google Scholar 

  90. Paine A J 2001 Defining a Tolerable Concentration of Methanol in Alcoholic Drinks Hum. Exp. Toxicol. 20 563

    CAS  PubMed  Google Scholar 

  91. Zhang J P, Lin Y Y, Zhang W X and Chen X M 2005 Temperature- or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer J. Am. Chem. Soc. 127 14162

    CAS  PubMed  Google Scholar 

  92. Albrecht M, Lutz M, Schreurs A M M, Lutz E T H, Spek A L and van Koten G 2000 Self-Assembled Organoplatinum(II) Supermolecules as Crystalline, SO2 Gas-Triggered Switches J. Chem. Soc. Dalton Trans. 3797

    Google Scholar 

  93. Albrecht M, Lutz M, Spek A L and Van Koten G 2000 Organoplatinum Crystals for Gas-Triggered Switches Nature 406 970

    CAS  PubMed  Google Scholar 

  94. Supriya S and Das S K 2007 Reversible Single Crystal to Single Crystal Transformation through Fe-O(H)Me/Fe-OH2 Bond Formation/Bond Breaking in a Gas-Solid Reaction at an Ambient Condition J. Am. Chem. Soc. 129 3464

    CAS  PubMed  Google Scholar 

  95. Sabbani S and Das S K 2015 Reversible Solid to Solid Transformation in a Crystalline State Gas–solid Reaction under Ambient Conditions: Fe–N(Pyridine) Bond Formation at the Expense of Fe–OH2 Bond Breaking and Vice Versa CrystEngComm 17 8850

    CAS  Google Scholar 

  96. Schoedel A and Zaworotko M J 2014 [μ33-O)(O2CR)6] and Related Trigonal Prisms: Versatile Molecular Building Blocks for Crystal Engineering of Metal–organic Material Platforms Chem. Sci. 5 1269

    CAS  Google Scholar 

  97. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S and Margiolaki I 2005 A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area Science 309 2040

    PubMed  Google Scholar 

  98. Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J and Margiolaki I 2004 A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction Angew. Chem. Int. Ed. 43 6296

    Google Scholar 

  99. Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J and Kim K A 2000 A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalysis Nature 404 982

    CAS  PubMed  Google Scholar 

  100. Serre C, Millange F, Surblé S and Férey G A 2004 A Route to the Synthesis of Trivalent Transition-Metal Porous Carboxylates with Trimeric Secondary Building Units Angew. Chem. Int. Ed. 43 6286

    CAS  Google Scholar 

  101. Sudik A C, Côté A P and Yaghi O M 2005 Metal-Organic Frameworks Based on Trigonal Prismatic Building Blocks and the New “Acs” Topology Inorg. Chem. 44 2998

    CAS  PubMed  Google Scholar 

  102. Xie D, Ma Y, Gu Y, Zhou H, Zhang H, Wang G, Zhang Y and Zhao H 2017 Bifunctional NH2-MIL-88(Fe) Metal–organic Framework Nanooctahedra for Highly Sensitive Detection and Efficient Removal of Arsenate in Aqueous Media J. Mater. Chem. A 5 23794

    CAS  Google Scholar 

  103. Zhai Q G, Bu X, Zhao X, Li D-S and Feng P 2017 Pore Space Partition in Metal-Organic Frameworks Acc. Chem. Res. 50 407

    CAS  PubMed  Google Scholar 

  104. Chen D-M, Sun C-X, Zhang N-N, Si H-H, Liu C-S and Du M 2018 Tunable Robust Pacs-MOFs: A Platform for Systematic Enhancement of the C2H2 Uptake and C2H2/C2H4 Separation Performance Inorg. Chem. 57 2883

    CAS  PubMed  Google Scholar 

  105. Manna P, Debgupta J, Bose S and Das S K 2016 A Mononuclear CoII Coordination Complex Locked in a Confined Space and Acting as an Electrochemical Water-Oxidation Catalyst: A “Ship-in-a-Bottle” Approach Angew. Chem. Int. Ed. 55 2425

    CAS  Google Scholar 

  106. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F and Férey G 2006 Metal-Organic Frameworks as Efficient Materials for Drug Delivery Angew. Chem. Int. Ed. 45 5974

    CAS  Google Scholar 

  107. Seo P W, Ahmed I and Jhung S H 2016 Adsorption of Indole and Quinoline from a Model Fuel on Functionalized MIL-101: Effects of H-Bonding and Coordination Phys. Chem. Chem. Phys. 18 14787

    CAS  PubMed  Google Scholar 

  108. Ma D, Li B, Liu K, Zhang X, Zou W, Yang Y, Li G, Shi Z and Feng S 2015 Bifunctional MOF Heterogeneous Catalysts Based on the Synergy of Dual Functional Sites for Efficient Conversion of CO2 under Mild and Co-Catalyst Free Conditions J. Mater. Chem. A 3 23136

    CAS  Google Scholar 

  109. Aguila B, Banerjee D, Nie Z, Shin Y, Ma S and Thallapally P K 2016 Selective Removal of Cesium and Strontium Using Porous Frameworks from High Level Nuclear Waste Chem. Commun. 52 5940

    CAS  Google Scholar 

  110. Uchida S and Mizuno N 2003 Unique Guest-Inclusion Properties of a Breathing Ionic Crystal of K3[Cr3O(OOCH)6(H2O)3][α-SiW12O40].16H2O Chem. - A Eur. J. 9 5850

    CAS  Google Scholar 

  111. Uchida S, Hashimoto M and Mizuno N 2002 A Breathing Ionic Crystal Displaying Selective Binding of Small Alcohols and Nitriles: K3[Cr3O(OOCH)6(H2O)3][α-SiW12O40]·16H2O Angew. Chem. Int. Ed. 41 2814

    CAS  Google Scholar 

  112. Kawamoto R, Uchida S and Mizuno N 2005 Amphiphilic Guest Sorption of K2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] Ionic Crystal J. Am. Chem. Soc. 127 10560

    CAS  PubMed  Google Scholar 

  113. Uchida S, Kawamoto R and Mizuno N 2006 Recognition of Small Polar Molecules with an Ionic Crystal of α-Keggin-Type Polyoxometalate with a Macrocation Inorg. Chem. 45 5136

    CAS  PubMed  Google Scholar 

  114. Uchida S and Mizuno N 2004 Zeotype Ionic Crystal of Cs5[Cr3O(OOCH)6(H2O)3][α-CoW12O40]·7.5H2O with Shape-Selective Adsorption of Water J. Am. Chem. Soc. 126 1602

    CAS  PubMed  Google Scholar 

  115. Ogasawara Y, Uchida S and Mizuno N 2007 States of Water in Ionic Crystals of [Cr3O(OOCH)6(H2O)3]+ Macrocation with α-Keggin-Type Polyoxometalates J. Phys. Chem. C 111 8218

    CAS  Google Scholar 

  116. Mizuno N and Uchida S 2006 Structures and Sorption Properties of Ionic Crystals of Polyoxometalates with Macrocation Chem. Lett. 35 688

    CAS  Google Scholar 

  117. Lesbani A, Kawamoto R, Uchida S and Mizuno N 2008 Control of Structures and Sorption Properties of Ionic Crystals of A2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] (A = Na, K, Rb, NH4, Cs, TMA) Inorg. Chem. 47 3349

    CAS  PubMed  Google Scholar 

  118. Arumuganathan T, Siddikha A and Das S K 2017 ‘Ionic Crystals’ Consisting of Trinuclear Macrocations and Polyoxometalate Anions Exhibiting Single Crystal to Single Crystal Transformation: Breathing of Crystals J. Chem. Sci. 129 1121

    CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge SERB, Department of Science and Technology, Government of India, for the financial support (Project No. EMR/2017/002971) of this work. We would also like to thank UGS-CAS, UPE-II, DST-PURSE and DST-FIST. OB thanks UGC for her fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAMAR K DAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BASU, O., DAS, S.K. Supramolecular inorganic chemistry leading to functional materials. J Chem Sci 132, 46 (2020). https://doi.org/10.1007/s12039-020-1744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-1744-0

Keywords

Navigation