Skip to main content
Log in

Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of n-tetradecane at 80 °C, k = 8.19) and very good thermal stability up to 340 °C using the NTf2 counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang D, Chong S, Malik A (1997) Sol-​gel column technology for single-​step deactivation, coating, and stationary-​phase immobilization in high-​resolution capillary gas chromatography. Anal Chem 69:4566–4576

    CAS  Google Scholar 

  2. Shende C, Kadir A, Malik A (2003) Sol-​gel poly(ethylene glycol) stationary phase for high-​resolution capillary gas chromatography. Anal Chem 75:3518–3530

    CAS  PubMed  Google Scholar 

  3. Zeng Z, Qiu W, Xing H, Huang Z (2000) Sol-​gel-​derived crown ether stationary phase for capillary gas chromatography. Anal Sci 16:851–854

    CAS  Google Scholar 

  4. Liang M, Qi M, Zhang C, Fu R (2004) Peralkylated-​beta-​cyclodextrin used as gas chromatographic stationary phase prepared by sol-​gel technology for capillary column. J Chromatogr A 1059:111–119

    CAS  PubMed  Google Scholar 

  5. Dong-Xin W, Malik A (2007) Separation of enantiomers of a chiral lactone on sol-gel gas chromatography capillary columns of poly(methydrosiloxane) stationary phase with pendant Permethylated β-Cyclodextrin. Chinese J Anal Chem 35:360–364

    Google Scholar 

  6. Sidelnikov V, Patrushev Y, Belov Y (2006) Sol-​gel multicapillary columns for gas-​solid chromatography. J Chromatogr A 1101:315–318

    CAS  PubMed  Google Scholar 

  7. Malik A , Wang D , PCT WO 00/11463 (2000)

  8. Malik A , Kabir A , Shende C , PCT WO 02/072225 A1 (2002)

  9. Poole CF, Poole SK (2011) Ionic liquid stationary phases for gas chromatography. J Sep Sci 34:888–900

    CAS  PubMed  Google Scholar 

  10. Fanali A, Micalizzi G, Dugo P, Mondello L (2017) Ionic liquids as stationary phases for fatty acid analysis by gas chromatography. Analyst 142:4601–4612

    CAS  PubMed  Google Scholar 

  11. Talebi M, Patil R, Sidisky L, Berthod A, Armstrong DW (2018) Variation of anionic moieties of dicationic ionic liquid GC stationary phases: Effect on stability and selectivity. Anal Chim Acta 1042:155–164

    CAS  PubMed  Google Scholar 

  12. Pojjanapornpun S, Nolvachai Y, Aryusuk K, Kulsing C, Krisnangkura K, Marriott P (2018) Ionic liquid phases with comprehensive two-​dimensional gas chromatography of fatty acid methyl esters. Anal Bioanal Chem 410:4669–4677

    CAS  PubMed  Google Scholar 

  13. Cagliero A, Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B (2018) Ionic liquids as water-​compatible GC stationary phases for the analysis of fragrances and essential oils. Anal Bioanal Chem 410:4657–4668

    CAS  PubMed  Google Scholar 

  14. Mazzucotelli M, Bicchi C, Marengo Z, Rubiolo P, Galli S, Anderson J, Sgorbini B, Cagliero C (2019) Ionic liquids as stationary phases for gas chromatography-​Unusual selectivity of ionic liquids with a phosphonium cation and different anions in the flavor, fragrance and essential oil analyses. J Chromatogr A 1583:124–135

    CAS  PubMed  Google Scholar 

  15. Ros M, Escobar-Armanz J, Sanz ML, Ramos L (2018) Evaluation of ionic liquid gas chromatography stationary phases for the separation of polychlorinated biphenyls. J Chromatogr A 1559:156–163

    CAS  PubMed  Google Scholar 

  16. Ho TD, Zhang C, Hantao LW, Anderson JL (2014) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285

    CAS  PubMed  Google Scholar 

  17. Poole CF, Lenca N (2014) Gas chromatography on wall-​coated open-​tubular columns with ionic liquid stationary phases. J Chromatogr A 1357:87–109

    CAS  PubMed  Google Scholar 

  18. Shashkov M, Sidelnikov V (2019) Orthogonality and quality of GC × GC separations for complex samples with ionic liquid stationary phases in first dimension. Chromatographia 82:615–624

    CAS  Google Scholar 

  19. Nan H, Anderson J (2018) Ionic liquid stationary phases for multidimensional gas chromatography. Trends Anal Chem 105:367–379

    CAS  Google Scholar 

  20. Patil R, Talebi M, Sidisky L, Armstrong DW (2017) Examination of selectivities of thermally stable geminal dicationic ionic liquids by structural modification. Chromatographia 80:1563–1574

    CAS  Google Scholar 

  21. Patil R, Talebi M, Armstrong DW (2018) Physicochemical properties of branched-​chain dicationic ionic liquids. J Mol Liq 256:247–255

    Google Scholar 

  22. Patil R, Talebi M, Sidisky L, Berthod A, Armstrong DW (2018) Gas chromatography selectivity of new phosphonium-​based dicationic ionic liquid stationary phases. J Sep Sci 41:4142–4148

    CAS  PubMed  Google Scholar 

  23. Heydar KT, Pourrahim S, Ghonouei N, Yaghoubnejad S, Sharifi A (2018) Thermodynamic parameters of a new synthesized tricationic ionic liquid stationary phase by inverse gas chromatography. J Chem Eng Data 63:4513–4523

    CAS  Google Scholar 

  24. Dai J-L, Zhao L-H, Shi J-H (2017) Preparation and evaluation of a novel bonded imidazolium ionic liquid as stationary phase for gas chromatography. J Sep Sci 40:2769–2778

    CAS  PubMed  Google Scholar 

  25. Zhao X, Tan K, Xing J (2019) Flexible and convenient strategy for synthesis of ionic liquid bonded polysiloxane stationary phases. J Chromatogr A 1587:197–208

    CAS  PubMed  Google Scholar 

  26. Delahousse G, Peulon-Agasse V, Debray J, Vaccaro M, Cravotto G, Jabin I, Cardinael P (2013) The incorporation of calix[6]​arene and cyclodextrin derivatives into sol-​gels for the preparation of stationary phases for gas chromatography. J Chromatogr A 1318:207–216

    CAS  PubMed  Google Scholar 

  27. Cardinael P, Ndzie E, Petit S, Coquerel G, Combret Y, Combret JC (1997) Enantiomeric separation of 5-​alkyl-​5-​methylhydantoin derivatives by capillary gas chromatography on permethylated β-​cyclodextrin and molecular modelling. J High Resolut Chromatogr 20:560–564

    CAS  Google Scholar 

  28. Curat A, Tisse S, Andrieu A, Bar N, Villemin D, Cardinael P (2014) Physical ionic liquid​/polysiloxane mixtures for tuning the polarity and the selectivity of the polysiloxane stationary phase for GC analysis. Chromatographia 77:1671–1681

    CAS  Google Scholar 

  29. Rohrschneider L (1966) A method of characterization of the liquids used for separation in gas chromatography. J Chromatogr 22:6–22

    CAS  PubMed  Google Scholar 

  30. McReynolds WO (1970) Characterization of some liquid phases. J Chromatogr Sci 8:685–691

    CAS  Google Scholar 

  31. Grob RL, Barry EF (2004) Modern pratice of gas chromatography, 4th edn. Wiley, Hoboken

    Google Scholar 

  32. Poole A (2012) Gas chromatography. Elsevier, Waltham

    Google Scholar 

  33. Abraham MH, Poole C, Poole SK (1999) Classification of stationary phases and other materials by gas chromatography. J Chromatogr A 842:79–114

    CAS  Google Scholar 

  34. Abraham MH, Ibrahim A, Zissimos AM (2004) Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A 1037:29–47

    CAS  PubMed  Google Scholar 

  35. Grob K, Grob G, Grob K (1978) Comprehensive, standardized quality test for glass capillary columns. J Chromatogr 156:1–20

    CAS  Google Scholar 

  36. Grob K, Grob G (1981) Testing capillary gas chromatographic columns. J Chromatogr 219:13–20

    CAS  Google Scholar 

  37. Qi M, Armstrong DW (2007) Dicationic ionic liquid stationary phase for GC-​MS analysis of volatile compounds in herbal plants. Anal Bioanal Chem 388:889–899

    CAS  PubMed  Google Scholar 

  38. Wei Q, Qi ML, Yang HX, Fu RN (2011) Separation characteristics of ionic liquids grafted polymethylsiloxanes stationary phases for capillary GC. Chromatographia 74:717–724

    CAS  Google Scholar 

  39. Gonzalez-Alvarez J, Arias-Abrodo P, Puerto M, Viguri ME, Perez J, Gutierrez-Alvarez MD (2013) Polymerized phosphonium-​based ionic liquids as gas chromatography stationary phases. RSC Adv 3:21377–21380

    CAS  Google Scholar 

  40. Armstrong DW, He L, Liu YA (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3673–3676

    Google Scholar 

  41. Sun X, Wu C, Xing J (2010) Ionic liquid-​bonded polysiloxane as stationary phase for capillary gas chromatography. J Sep Sci 33:3159–3167

    CAS  PubMed  Google Scholar 

  42. Sun X, Zhu Y, Wang P, Li J, Wu C, Xing J (2011) High temperature and highly selective stationary phases of ionic liquid bonded polysiloxanes for gas chromatography. J Chromatogr A 1218:833–841

    CAS  PubMed  Google Scholar 

  43. Wang L, Wang X, Qi M, Fu R (2014) High temperature and highly selective stationary phases of ionic liquid bonded polysiloxanes for gas chromatography. J Chromatogr A 1334:112–117

    CAS  PubMed  Google Scholar 

  44. Wang X, Qi M, Fu R (2014) Separation performance of cucurbit[7]​uril in ionic liquid-​based sol-​gel coating as stationary phase for capillary gas chromatography. J Chromatogr A 1371:237–243

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the interregional program ‘Centre Régional Universitaire Normand de Chimie’ (CRUNCh) for its financial support. The authors thank the Conseil Régional de Haute Normandie, France, for a PhD grant awarded to Aurélien Curat. The authors thank Benjamin Schamme (University of Rouen) for the TGA experiments and Emilie Bobo (University of Rouen) for the microscopy experiments. The authors thank the French Ministry for Research and Education, the Region Normandie (Research Grant) and FEDER for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Séverine Tisse or Pascal Cardinael.

Ethics declarations

Conflicts of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curat, A., Tisse, S., Agasse-Peulon, V. et al. Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process. Chromatographia 83, 439–449 (2020). https://doi.org/10.1007/s10337-020-03854-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03854-7

Keywords

Navigation