Skip to main content
Log in

Simultaneous Quantification of Methionine-Related Metabolites and Co-factors in IPEC-J2 and PIEC Cells by LC–MS/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The methionine cycle is a key pathway to provide substrates for many basic biological processes including methylation and redox reactions. Here, we demonstrated a rapid and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for quantifying the metabolites and co-factors of the methionine metabolism. The analytes included methionine, S-adenosylmethionine, S-adenosylhomocysteine, 5′-deoxy-5′-(methylthio)adenosine, homocysteine, cystathionine, cysteine, glutathione, 5-methyltetrahydrofolate, vitamins B6, folic acid and vitamin B12. Linearities were obtained in all of the analytes with R2 larger than 0.99. Limits of quantification were in the range of 0.02–0.91 ng/106 cells, respectively. The recoveries of all of the analytes spiked at low, medium and high concentrations in cell lysates ranged from 74 to 117% and the accuracies ranged from 93.5 to 123.4%. The intra-day and inter-day precisions were lower than 20% of the relative standard deviations. This method was specifically designed for determining the intracellular concentrations of these analytes in the porcine small intestinal epithelial cell lines and the pig iliac artery endothelial cell lines. It enables the demonstration of changes in the concentrations of methionine intermediates when the cells are faced with deficient, moderate or excessive methionine. This method is expected to facilitate the understanding of the regulatory mechanism of nutrients on methionine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brosnan JT, Brosnan ME (1640S) J Nutr 136(6):1636S–1640S

    Article  CAS  Google Scholar 

  2. Fontecave M, Atta M, Mulliez E (2004) Trends Biochem Sci 29(5):243–249

    Article  CAS  Google Scholar 

  3. Andrade F, Rodríguezsoriano J, Prieto JA, Aguirre M, Ariceta G, Lage S, Azcona I, Prado C, Sanjurjo P, Aldámiz-Echevarría L (2011) Nephrol Dial Transpl 26(1):328–336

    Article  CAS  Google Scholar 

  4. Ragione FD, Carteni-Farina M, Gragnaniello V, Schettino MI, Zappia V (1986) J Biol Chem 261(26):12324–12329

    PubMed  Google Scholar 

  5. McCarty M (2010) Med Hypoth 75(2):141–147

    Article  CAS  Google Scholar 

  6. Kalhan SC, Marczewski SE (2012) Rev Endocr Metab Disord 13(2):109–119

    Article  CAS  Google Scholar 

  7. Matthews RG, Elmore CL (2007) Clin Chem Lab Med 45(12):1700–1703

    Article  CAS  Google Scholar 

  8. Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) J Nutr 128(3):606–614

    Article  CAS  Google Scholar 

  9. Fang Z, Yao K, Zhang X, Zhao S, Sun Z, Tian G, Yu B, Lin Y, Zhu B, Jia G, Zhang K, Chen D, Wu D (2010) Amino Acids 39(3):633–640

    Article  CAS  Google Scholar 

  10. Xia M, Pan Y, Guo L, Wei XX, Xiong J, Wang L, Peng J, Wang C, Peng J, Wei HK (2019) J Anim Sci 97:3487–3497

    Article  Google Scholar 

  11. Longchamp A, Mirabella T, Arduini A et al (2018) Cell 173(1):117–129.e14

    Article  CAS  Google Scholar 

  12. Sahin M, Sahin E, Gümüşlü S, Erdoğan A, Gültekin M (2011) Biochem Biophys Res Commun 408(1):145–148

    Article  CAS  Google Scholar 

  13. Pan L, Yu G, Huang J, Zheng X, Xu Y (2017) Biosci Rep 37(5):BSR20170860

  14. Kořínek M, Šístek V, Mládková J, Mikeš P, Jiráček J, Selicharová I (2013) Biomed Chromatogr 27(1):111–121

    Article  Google Scholar 

  15. Johansson M, Van Guelpen B, Vollset SE, Hultdin J, Bergh A, Key T, Midttun O, Hallmans G, Ueland PM, Stattin P (2009) Cancer Epidemiol Biomark Prev 18(5):1538–1543

  16. Stevens AP, Dettmer K, Kirovski G, Samejima K, Hellerbrand C, Bosserhoff AK, Oefner PJ (2010) J Chromatogr A 1217(19):3282–3288

    Article  CAS  Google Scholar 

  17. Iglesias González T, Cinti M, Montes-Bayón M, Fernández de la Campa MR, Blanco-González E (2015) J Chromatogr A 1393(3):89–95

  18. Borowczyk K, Chwatko G, Kubalczyk P, Jakubowski H, Kubalska J, Głowacki R (2016) Talanta 161:917–924

    Article  CAS  Google Scholar 

  19. Mohammadi S, Domeno C, Nerin I, Aznar M, Samper P, Khayatian G, Nerin C (2017) J Pharm Biomed Anal 145:331–338

    Article  CAS  Google Scholar 

  20. Glushchenko AV, Jacobsen DW (2007) Antioxid Redox Signal 9(11):1883–1898

    Article  CAS  Google Scholar 

  21. Sen CK, Packer L (2000) Am J Clin Nutr 72(2):653S–669S

    Article  CAS  Google Scholar 

  22. Persichilli S, Gervasoni J, Iavarone F, Zuppi C, Zappacosta B (2010) J Sep Sci 33(20):3119–3124

    Article  CAS  Google Scholar 

  23. Gardner LA, Desiderio DM, Groover CJ, Hartzes A, Yates CR, Zucker-Levin AR, Bloom L, Levin MC (2013) Electrophoresis 34(11):1710–1716

    Article  CAS  Google Scholar 

  24. Zhang M, Wang L, Pei P, Bao YH (2018) Anal Methods 10(11):1315–1324

    Article  CAS  Google Scholar 

  25. Fu XW, Xu YK, Chan P, Pattengale PK (2013) Jimd Rep 10:69–78

    Article  Google Scholar 

  26. Ghassabian S, Rethwan NSA, Griffiths L, Smit MT (2014) J Chromatogr B Anal Technol Biomed Life Sci 972:14–21

    Article  CAS  Google Scholar 

  27. Guiraud SP, Montoliu I, Silva LD, Dayon L, Galindo AN, Corthésy J, Kussmann M, Martin FP (2017) Anal Bioanal Chem 409(1):295–305

    Article  CAS  Google Scholar 

  28. Kovac A, Svihlova K, Michalicova A, Novak M (2014) J Chromatogr Sci 53(6):953–958

    Article  Google Scholar 

  29. Da Silva L, Collino S, Cominetti O, Martin FP, Montoliu I, Moreno SO, Corthesy J, Kaput J, Kussmann M, Monteiro JP (2016) Bioanalysis 8(18):1937–1949

    Article  Google Scholar 

  30. Jiang Y, Mistretta B, Elsea S, Sun Q (2017) Clin Chim Acta 464:93–97

    Article  CAS  Google Scholar 

  31. Goniewicz ML, Havel CM, Peng MW, Jacob P, Dempsey D, Yu L, Zielinska-Danch W, Koszowski B, Czogala J, Sobczak A, Benowitz NL (2009) Cancer Epidemiol Biomark Prev 18(12):3421–3425

    Article  CAS  Google Scholar 

  32. US Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) (2011) Guidance for industry, bioanalytical method validation.

  33. Oosterink JE, Naninck EF, Korosi A, Lucassen PJ, van Goudoever JB, Schierbeek H (2015) J Chromatogr B 998–999:106–113

    Article  Google Scholar 

  34. Zheng LF, Zuo FR, Zhao SJ, He PL, Wei HK, Xiang QH, Pang JM, Peng J (2017) Br J Nutr 117(7):911–922

    Article  CAS  Google Scholar 

  35. Shi B, Liu J, Sun Z, Li T, Zhu W, Tang Z (2016) J Appl Anim Res 46(1):74–80

    Article  Google Scholar 

  36. Song T, Lu J, Deng Z, Xu T, Yang Y, Wei H, Li S, Jiang S, Peng J (2018) Int J Obes 42:1812–1820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the State Key Laboratory of Agricultural Microbiology of Huazhong Agricultural University for the LC–MS/MS usage.

Funding

This study was supported by the Fundamental Research Funds for the Central Universities of China (no. 2662018JC009 and no. 2662017PY017); National key Research and Development project of China (no. 2017YFD0502004); China Agriculture Research System (no. CARS-36); Hubei Provincial Creative Team Project of Agricultural Science and Technology (no. 2007-620).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongkui Wei or Shengqing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, F., Gu, Q., Peng, J. et al. Simultaneous Quantification of Methionine-Related Metabolites and Co-factors in IPEC-J2 and PIEC Cells by LC–MS/MS. Chromatographia 83, 361–371 (2020). https://doi.org/10.1007/s10337-019-03852-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03852-4

Keywords

Navigation