Skip to main content
Log in

Significance of Glutamate Racemase for the Viability and Cell Wall Integrity of Streptococcus iniae

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Streptococcus iniae is a pathogenic and zoonotic bacterium responsible for human diseases and mortality of many fish species. Recently, this bacterium has demonstrated an increasing trend for antibiotics resistance, which has warranted a search for new approaches to tackle its infection. Glutamate racemase (MurI) is a ubiquitous enzyme of the peptidoglycan synthesis pathway that plays an important role in the cell wall integrity maintenance; however, the significance of this enzyme differs in different species. In this study, we knocked out the MurI gene in S. iniae in order to elucidate the role of glutamate racemase in maintaining cell wall integrity in this bacterial species. We also cloned, expressed, and purified MurI and determined its biochemical characteristics. Biochemical analysis revealed that the MurI gene in S. iniae encodes a functional enzyme with a molecular weight of 30 kDa, temperature optimum at 35°C, and pH optimum at 8.5. Metal ions, such as Cu2+, Mn2+, Co2+ and Zn2+, inhibited the enzyme activity. MurI was found to be essential for the viability and cell wall integrity of S. iniae. The optimal growth of the MurI-deficient S. iniae mutant can be achieved only by adding a high concentration of D-glutamate to the medium. Membrane permeability assay of the mutant showed an increasing extent of the cell wall damage with time upon D-glutamate starvation. Moreover, the mutant lost its virulence when incubated in fish blood. Our results demonstrated that the MurI knockout leads to the generation of S. iniae auxotroph with damaged cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFU:

colony-forming unit

GlcNAc:

N-acetyl-glucosamine

INT:

iodonitrotetrazolium chloride

LB:

Luria—Bertani (medium)

MurNAc:

N-acetylmuramic acid

TSYE:

tryptone soy yeast extract

References

  1. Mehboob, S., Guo, L., Fu, W., Mittal, A., Yau, T., Truong, K., Johlfs, M., Long, E., Fung, L. W., and Johnson, M. E. (2009) Glutamate racemase dimerization inhibits dynamic conformational flexibility and reduces catalytic rates, Biochemistry, 48, 7045–7055, doi: 10.1021/bi9005072.

    Article  CAS  Google Scholar 

  2. Rogers, H. J., Perkins, H. R., and Ward, J. B. (1980) Microbial Cell Walls and Membranes, Springer, doi: 72-104.10.1007/978-94-011-6014-8.

    Book  Google Scholar 

  3. Prosser, G. A., Rodenburg, A., Khoury, H., de Chiara, C., Howell, S., Snijders, A. P., and de Carvalho, L. P. S. (2016) Glutamate racemase is the primary target of β-chloro-D-alanine in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 60, 6091–6099, doi: 10.1128/AAC.01249-16.

    Article  CAS  Google Scholar 

  4. Whalen, K. L., Pankow, K. L., Blanke, S. R., and Spies, M. A. (2009) Exploiting enzyme plasticity in virtual screening: high efficiency inhibitors of glutamate racemase, ACS Med. Chem. Lett., 1, 9–13, doi: 10.1021/ml900005b.

    Article  Google Scholar 

  5. Fisher, S. L. (2008) Glutamate racemase as a target for drug discovery, Microb. Biotechnol, 1, 345–360, doi: 10.1111/j.1751-7915.2008.00031.x.

    Article  CAS  Google Scholar 

  6. Dean, S. E., Whalen, K. E., and Spies, M. A. (2015) Biosynthesis of a novel glutamate racemase containing a site-specific 7-hydroxycoumarin amino acid: enzyme—ligand promiscuity revealed at the atomistic level, ACS Cent. Sci, 1, 364–373,doi: 10.1021/acscentsci.5b00211.

    Article  CAS  Google Scholar 

  7. Agnew, W., and Barnes, A. C. (2007) Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination, Vet. Microbiol., 122, 1–15, doi: 10.1016/j.vetmic.2007.03.002.

    Article  CAS  Google Scholar 

  8. Oh, S.-Y., Richter, S. G., Missiakas, D. M., and Schneewind, O. (2015) Glutamate racemase mutants of Bacillus anthracis, J. Bacteriol., 197, 1854–1861, doi: 10.1128/JB.00070-15.

    Article  CAS  Google Scholar 

  9. Doublet, P., Van Heijenoort, J., Bohin, J.-R., and Mengin-Lecreulx, D. (1993) The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity, J. Bacteriol, 175, 2970–2979, doi: 10.1128/jb.l75.10.2970-2979.1993.

    Article  CAS  Google Scholar 

  10. Pucci, M. J., Thanassi, J. A., Ho, H. T., Falk, P. J., and Dougherty, T. J. (1995) Staphylococcus haemolyticus contains two D-glutamic acid biosynthetic activities, a glutamate racemase and a D-amino acid transaminase, J. Bacteriol, 177, 336–342, doi: 10.1128/jb.l77.2.336-342. 1995.

    Article  CAS  Google Scholar 

  11. Fotheringham, I. G., Bledig, S. A., and Taylor, P. P. (1998) Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208, J. Bacteriol., 80, 4319–4323.

    Article  Google Scholar 

  12. Vance, N. R., Witkin, K. R., Rooney, P. W., Li, Y., Pope, M., and Spies, M. A. (2018) Elucidating the catalytic power of glutamate racemase by investigating a series of covalent inhibitors, ChemMedChem, 13, 2514–2521, doi: 10.1002/cmdc.201800592.

    Article  CAS  Google Scholar 

  13. Ferain, T., Hobbs, J., Richardson, J., Bernard, N., Garmyn, D., Hols, P., Allen, N., and Delcour, J. (1996) Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum, J. Bacteriol, 178, 5431–5437, doi: 10.1128/jb.l78.18.5431-5437.1996.

    Article  CAS  Google Scholar 

  14. Berney, M., Hammes, F., Bosshard, F., Weilenmann, H-U., and Egli, T. (2007) Assessment and interpretation of bacterial viability by using the LrVE/DEAD BacLight Kit in combination with flow cytometry, Appl. Environ. Microbiol, 73, 3283–3290, doi: 10.1128/AEM.02750-06.

    Article  CAS  Google Scholar 

  15. Buchanan, J. T., Colvin, K. M., Vicknair, M. R., Patel, S. K., Timmer, A. M., and Nizet, V. (2008) Strain-associated virulence factors of Streptococcus iniae in hybrid-striped bass, Vet. Microbiol, 131, 145–153, doi: 10.1016/j.vetmic.2008.02.027.

    Article  Google Scholar 

  16. Hashimoto, A., Nishikawa, T., Oka, T., Takahashi, K., and Hayashi, T. (1992) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert-butyloxy-carbonyl-L-cysteine and o-phthaldialdehyde, J. Chromatogr. B Biomed. Sci. Appl, 582, 41–48.

    Article  CAS  Google Scholar 

  17. Hwang, K. Y., Cho, C.-S., Kim, S. S., Sung, H.-C., Yu, Y. G., and Cho, Y. (1999) Structure and mechanism of glutamate racemase from Aquifex pyrophilus, Nat. Struct. Mol. Biol, 6, 422, doi: 10.1038/8223.

    Article  CAS  Google Scholar 

  18. Stocks, S. (2004) Mechanism and use of the commercially available viability stain, BacLight, Cytometry A, 61, 189–195, doi: 10.1002/cyto.a.20069.

    Article  CAS  Google Scholar 

  19. Liu, G. Y., Essex, A., Buchanan, J. T., Datta, V., Hoffman, H. M., Bastian, J. F., Fierer, J., and Nizet, V. (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity, J. Exp. Med, 202, 209–215, doi: 10.1084/jem.20050846.

    Article  CAS  Google Scholar 

  20. Nakajima, N., Tanizawa, K., Tanaka, H., and Soda, K. (1986) Cloning and expression in Escherichia coli of the glutamate racemase gene from Pediococcus pentosaceus, Agric. Biol. Chem., 50, 2823–2830, doi: 10.1271/bbbl961.50.2823.

    CAS  Google Scholar 

  21. Bohmer, N., Dautel, A., Eisele, T., and Fischer, L. (2013) Recombinant expression, purification and characterisation of the native glutamate racemase from Lactobacillus plantarum NC8, Protein Expr. Purif., 88, 54–60, doi: 10.1016/j.pep.2012.11.012.

    Article  Google Scholar 

  22. Dodd, D., Reese, J. G., Louer, C. R., Ballard, J. D., Spies, M. A, and Blanke, S. R. (2007) Functional comparison of the two Bacillus anthracis glutamate racemases, J. Bacteriol., 189, 5265–5275, doi: 10.1128/JB.00352-07.

    Article  CAS  Google Scholar 

  23. Israyilova, A., Buroni, S., Forneris, F., Scoffone, V. C., Shixaliyev, N. Q., Riccardi, G., and Chiarelli, L. R. (2016) Biochemical characterization of glutamate racemase — a new candidate drug target against Burkholderia cenocepacia infections, PloS One, 11, e0167350, doi: 10.1371/journal.pone.0167350.

    Article  Google Scholar 

  24. Ashiuchi, M., Tani, K., Soda, K., and Misono, H. (1998) Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-y-glutamate, J. Biochem., 123, 1156–1163, doi: 10.1093/oxfordjournals.jbchem.a022055.

    Article  CAS  Google Scholar 

  25. Potrykus, J., Flemming, J., and Bearne, S. L. (2009) Kinetic characterization and quaternary structure of glutamate racemase from the periodontal anaerobe Fusobacterium nucleatum, Arch. Biochem. Biophys., 491, 16–24, doi: 10.1016/j.abb.2009.09.009.

    Article  CAS  Google Scholar 

  26. Sheng, X., Liu, M., Liu, H., Tang, X., Xing, J., and Zhan, W. (2018) Identification of immunogenic proteins and evaluation of recombinant PDHA1 and GAPDH as potential vaccine candidates against Streptococcus iniae infection in flounder (Paralichthys olivaceus), PLoSOne, 13, e0195450, doi: 10.1371/journal.pone.0195450.

    Article  Google Scholar 

  27. Kim, M. S., Choi, S. H., and Kim, K. H. (2015) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Streptococcus iniae shows potential as a subunit vaccine against various streptococcal species, J. Fish Pathol., 28, 9–15, doi: 10.7847/jfp.2015.28.1.009.

    Article  Google Scholar 

  28. Muhammad, M., Li, Y., Gong, S., Shi, Y., Ju, J., Zhao, B., and Liu, D. (2019) Purification, characterization and inhibition of alanine racemase from a pathogenic strain of Streptococcus iniae, Pol. J. Microbiol., 68, 331–341, doi: 10.33073/pjm-2019-036.

    Article  Google Scholar 

  29. Song, J.-H., Ko, K. S., Lee, J.-Y., Baek, J. Y., Oh, W. S., Yoon, H. S., Jeong, J.-Y., and Chun, J. (2005) Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis, Mol. Cells, 19, 365–374.

    CAS  PubMed  Google Scholar 

  30. Kimura, K., Tran, L.-S. P., and Itoh, Y. (2004) Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis, Microbiology, 150, 2911–2920, doi: 10.1099/mic.0.27045-0.

    Article  CAS  Google Scholar 

  31. Li, Y., Mortuza, R., Milligan, D. L., Tran, S. L., Strych, U., Cook, G. M., and Krause, K. L. (2014) Investigation of the essentiality of glutamate racemase in Mycobacterium smegmatis, J. Bacteriol, 196, 4239–4244, doi: 10.1128/JB.02090-14.

    Article  Google Scholar 

  32. Morayya, S., Awasthy D., Yadav, R., Ambady A., and Sharma, U. (2015) Revisiting the essentiality of glutamate racemase in Mycobacterium tuberculosis, Gene, 555, 269–276, doi: 10.1016/j.gene.2014.11.017.

    Article  CAS  Google Scholar 

  33. Mortuza, R., Aung, H. L., Taiaroa, G., Opel-Reading, H. K., Kleffmann, T., Cook, G. M., and Krause, K. L. (2018) Overexpression of a newly identified D-amino acid transaminase in Mycobacterium smegmatis complements glutamate racemase deletion, Mol. Microbiol, 107, 198–213, doi: 10.1111/mmi.l3877.

    Article  CAS  Google Scholar 

  34. Dougherty, T. J., Thanassi, J. A., and Pucci, M. J. (1993) The Escherichia coli mutant requiring D-glutamic acid is the result of mutations in two distinct genetic loci, J. Bacteriol., 175, 111–116, doi: 10.1128/jb.175.1.111-116.1993.

    Article  CAS  Google Scholar 

  35. Zhang, J., Liu, J., Ling, J., Tong, Z., Fu, Y., and Liang, M. (2016) Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutatis, Microbiol. Res., 186, 1–8, doi: 10.1016/j.micres.2016.02.003.

    Article  CAS  Google Scholar 

  36. Malapati, P., Krishna, V. S., Nallangi, R., Meda, N., Srilakshmi, R. R., and Sriram, D. (2018) Lead identification and optimization of bacterial glutamate racemase inhibitors, Bioorg. Med. Chem., 26, 177–190, doi: 10.1016/j.bmc.2017.11.031.

    Article  CAS  Google Scholar 

  37. Cabral, M. P., Garcia, P., Beceiro, A., Rumbo, C., Perez, A., Moscoso, M., and Bou, G. (2017) Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy Nat. Commun., 8, 15480, doi: 10.1038/ncommsl5480.

    Article  CAS  Google Scholar 

  38. Tummler, B. (2019) Emerging therapies against infections with Pseudomonas aeruginosa, F1000Res., 8, F1000 Faculty Rev-1371, doi: 10.12688/fl000research.19509.1.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Hebei Province (C2019205044), Outstanding Youth Foundation of Department of Education of Hebei Province (YQ2014026), Research Fund of Hebei Normal University (L2016Z03), State Key Laboratory of Pathogen and Biosecurity (Academy of Military Medical Science) (SKLPBS1529), and Science and Technology Research Project of Hebei Normal University (ZD2018070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Zhao or D. Liu.

Ethics declarations

Ethical approval. All experimental animal procedures were carried out strictly according to the recommendations from the Guide for the Care and Use of the Laboratory Animals of Hebei Province of China. Animal experiment protocols were approved by the Animal Monitoring Committee of Hebei Normal University.

Additional information

Conflict of interest. The authors declare no conflict of interest.

Published in Russian in Biokhimiya, 2020, Vol. 85, No. 2, pp. 287-296

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, M., Bai, J., Alhassan, A.J. et al. Significance of Glutamate Racemase for the Viability and Cell Wall Integrity of Streptococcus iniae. Biochemistry Moscow 85, 248–256 (2020). https://doi.org/10.1134/S0006297920020121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920020121

Keywords

Navigation