Skip to main content
Log in

Complexes Formed via Bioconjugation of Genetically Modified TMV Particles with Conserved Influenza Antigen: Synthesis and Characterization

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Recently we obtained complexes between genetically modified Tobacco Mosaic Virus (TMV) particles and proteins carrying conserved influenza antigen such as M2e epitope. Viral vector TMV-N-lys based on TMV-U1 genome was constructed by insertion of chemically active lysine into the exposed N-terminal part of the coat protein. Nicotiana benthamiana plants were agroinjected and TMV-N-lys virions were purified from non-inoculated leaves. Preparation was analyzed by SDS-PAGE/Coomassie staining; main protein with electrophoretic mobility of 21 kDa was detected. Electron microscopy confirmed the stability of modified particles. Chemical conjugation of TMV-N-lys virions and target influenza antigen M2e expressed in E. coli was performed using 5 mM 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 1 mM N-hydroxysuccinimide. The efficiency of chemical conjugation was confirmed by Western blotting. For additional characterization we used conventional electron microscopy. The diameter of the complexes did not differ significantly from the initial TMV-N-lys virions, but complexes formed highly organized and extensive network with dense “grains” on the surface. Dynamic light scattering demonstrated that the single peaks, reflecting the complexes TMV-N-lys/DHFR-M2e were significantly shifted relative to the control TMV-N-lys virions. The indirect enzymelinked immunosorbent assay with TMV- and DHFR-M2e-specific antibodies showed that the complexes retain stability during overnight adsorption. Thus, the results allow using these complexes for immunization of animals with the subsequent preparation of a candidate universal vaccine against the influenza virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

ADFK:

alanine-aspartic acid-phenylalanine-lysine sequence

CP:

coat protein

DHFR:

dihydrofolate reductase

EDC:

1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide

M2e:

conserved epitope of influenza A virus (25.5 kDa)

NHS:

N-hydroxysuccinimide

NP:

nucleoprotein

TMV:

tobacco mosaic virus

References

  1. Krammer, F. (2016) Novel universal influenza virus vaccine approaches, Cur. Opin. Virol, 17, 95–103; doi: 10.1016/ j.coviro.2016.02.002.

    Article  CAS  Google Scholar 

  2. Deng, L., Cho, K. J., Fiers, W., and Saelens, X. (2015) M2e-based universal influenza A vaccines, Vaccines, 3, 105–136; doi: 10.3390/vaccines3010105.

    Article  CAS  Google Scholar 

  3. Virelizier, J. L., Allison, A. C, Oxford, J. S., and Schild, G. C. (1977) Early presence of ribonucleoprotein antigen on surface of influenza virus-infected cells, Nature, 266, 52–54; doi: 10.1038/266052a0.

    Article  CAS  Google Scholar 

  4. Xue, C, Tian, G., Chen, X., Liu, Q., Ma, J., Xu, S., Li, X, Chen, H., and Cao, Y (2015) Incorporation of conserved nucleoprotein into influenza virus-like particles could provoke a broad protective immune response in BALB/c mice and chickens, Virus Res., 195, 35–42; doi: 10.1016/j.virusres. 2014.09.018.

    Article  CAS  Google Scholar 

  5. Gotch, F, McMichael, A, Smith, G., and Moss, B. (1987) Identification of viral molecules recognized by influenza specific human cytotoxic L lymphocytes, J. Exp. Med., 165, 401–416; doi: 10.1084/jem.165.2.408.

    Article  Google Scholar 

  6. Boyd, A. C, Ruiz-Hernandez, R., Peroval, M. Y, Carsona, C, Balkissoonb, D., Staines, K., Lurner, A. V, Hill, A. V. S., Gilbert, S. C, and Butter, C. (2013) Lowards a universal vaccine for avian influenza: protective efficacy of modified vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus, Vaccine, 31, 670–675; doi: 10.1016/j.vaccine.2012.11. 047.

    Article  CAS  Google Scholar 

  7. Pushko, P., Pearce, M. B., Ahmad, A., and Lretyakova, I. (2011) Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes, Vaccine, 29, 5911–5918; doi: 10.1016/j.vaccine.2011.06.068.

    Article  CAS  Google Scholar 

  8. Fiers, W., De Filette, M., Bakkouri, K., Schepens, B., Roose, K., Schotsaert, M., Birkett, A., and Saelens, X. (2009) M2e-based universal influenza A vaccine, Vaccine, 11, 6280–6283; doi: 10.1016/j.vaccine.2009.07.007.

    Article  Google Scholar 

  9. Petukhova, N. V, Gasanova, L. V, Stepanova, L. A, Rusova, O. A., Potapchuk, M. V, Korotkov, A. V, Skurat, E. V, Lsybalova, L. M., Kiselev, O. I., Ivanov, P. A., and Atabekov, J. G. (2013) Immunogenicity and protective efficacy of candidate universal influenza A nanovaccines produced in plants by tobacco mosaic virus-based vectors, Curr. Pharm. Des., 19, 5587–5600; doi: 10.2174/ 13816128113199990337.

    Article  CAS  Google Scholar 

  10. Stepanova, L A., Kotlyarov, R. Y, Kovaleva, A. A., Potapchuk, M. V, Korotkov, A. V, Sergeeva, M. V, Kasianenko, M. A., Kuprianov, V. V, Ravin, N. V, Lsybalova, L M., Skryabin, K. G., and Kiselev, O. I. (2015) Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin, PloS One, 10, e0119520; doi: 10.1371/journal.pone.0119520.

    Article  Google Scholar 

  11. Mallajosyula, J. K., Hiatt, E., Hume, S., Johnson, A., Jeevan, L, Chikwamba, R., Pogue, G. P., Bratcher, B., Haydon, H., Webby, R. J., and McCormick, A. A. (2014) Single-dose monomelic HA subunit vaccine generates full protection from influenza challenge, Hum. Vaccin. Immunother., 10, 586–595; doi: 10.4161/hv.27567.

    Article  CAS  Google Scholar 

  12. Van Regenmortel, M. H. (1999) The antigenicity of tobacco mosaic virus, Philos. Trans. R Soc. Lond. B Biol. Sci., 354, 559–568; doi: 10.1098/rstb.l999.0407.

    Article  Google Scholar 

  13. McCormick, A. A., Corbo, T. A., Wykoff-Clary S., Palmer, K. E., and Pogue, G. P. (2006) Chemical conjugate LMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection, Bioconj. Chem., 17, 1330–1338; doi: 10.1021/bc060124m.

    Article  CAS  Google Scholar 

  14. Bruckman, M. A., Randolph, L. N., VanMeter, A., Hern, S., Shoffstall, A. J., Laurog, R. E., and Steinmetz, N. F. (2014) Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice, Virology, 449, 163–173; doi: 10.1016/j.virol.2013.10.035.

    Article  CAS  Google Scholar 

  15. Smith, M. L., Lindbo, J. A., Dillad-Lelm, S., Brosio, P. M., Lasnik, A. B., McCormick, A. A., Nguyen, L. V., and Palmer, K. E. (2006) Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications, Virology, 348, 475–488; doi: 10.1016/ j.virol.2005.12.039.

    Article  CAS  Google Scholar 

  16. Gasanova, T. V., Petukhova, N. V., and Ivanov, P. A. (2016) Chimeric particles of tobacco mosaic virus as a platform for the development of next-generation nanovaccines, Nanotechnologies in Russia, 11, 227–236; doi: 10.1134/S1995078016020051.

    Article  CAS  Google Scholar 

  17. Lee, S. Y., Royston, E., Culver, J. N., and Harris, M. T. (2005) Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template, Nanotechnology, 16, 435–441; doi: 10.1088/0957-4484/16/7/019.

    Article  CAS  Google Scholar 

  18. Banik, S., Mansour, A. A., Suresh, R. V., Wykoff-Clary, S., Malik, M., McCormick, A. A, and Bakshi, C. S. (2015) Development of a multivalent subunit vaccine against tularemia using tobacco mosaic virus (LMV) based delivery system, PloS One, 10, e0130858; doi: 10.1371/journal. pone.0130858.

    Article  Google Scholar 

  19. Narain, R. (2014) Chemistry of Bioconjugates: Synthesis, Characterization, and Biomedical Applications, John Wiley & Sons, Hoboken; doi: 10.1002/9781118775882.

    Book  Google Scholar 

  20. Petukhova, N. V., Gasanova, L. V., Ivanov, P. A., and Atabekov, J. G (2014) High-level systemic expression of conserved influenza epitope in plants on the surface of rod-shaped chimeric particles, Viruses, 6, 1789–1800; doi: 10.3390/v6041789.

    Article  CAS  Google Scholar 

  21. Liu, R., Vaishnav, R. A., Roberts, A. M., and Friedland, R. P. (2013) Humans have antibodies against a plant virus: evi-dence from tobacco mosaic virus, PLoS One, 8, e60621; doi: 10.1371/journal.pone.0060621.

    Article  CAS  Google Scholar 

  22. Geng, Y., Dalhaimer, P., Cai, S. S., Lsai, R., Lewari, M., Minko, T., and Discher, D. E. (2007) Shape effects of filaments versus spherical particles in flow and drug delivery, Nat. NanotechnoL, 2, 249–255; doi: 10.1038/nnano. 2007.70.

    Article  CAS  Google Scholar 

  23. Arnida, Janat-Amsbury M. M., Ray, A., Peterson, C. M., and Ghandehari, H. (2011) Geometry and surface characteristics of gold nano particles influence their biodistribution and uptake by macrophages, Eur. J. Pharm. Biopharm., 11, 417–423; doi: 10.1016/j.ejpb.2010.11.010.

    Article  Google Scholar 

  24. Huntley, J. F, Conley P. G., Rasko, D. A., Hagman, K. E., Apicella, M. A., and Norgard, M. V. (2008) Native outer membrane proteins protect mice against pulmonary challenge with virulent type A Francisella tularensis, Infect. Immun., 76, 3664–3671; doi: 10.1128/IAI.00374-08.

    Article  CAS  Google Scholar 

  25. Apicella, M. A., Post, D. M., Fowler, A. C, Jones, B. D., Rasmussen, J. A, Hunt, J. R., Imagawa, S., Choudhury, B., Inzana, T. J., Maier, T. M., Frank, D. W., Zahrt, T. C., Chaloner, K., Jennings, M. P., McLendon, M. K., and Gibson, B. W. (2010) Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis, PLoS One, 5, e11060; doi: 10.1371/journal.pone.0011060.

    Article  Google Scholar 

  26. Huntley, J. F., Conley, R. G., Hagman, K. E., and Norgard, M. V. (2007) Characterization of Francisella tularensis outer membrane proteins, J. Bacteriol., 189, 561–574; doi: 10.1128/JB.01505-06.

    Article  CAS  Google Scholar 

  27. Mallajosyula, J. K., Jeevan, T., Chikwamba, R., Webby, R. J., and McCormick, A. A. (2016) A single dose TMV-HA vaccine protects mice from H5N1 influenza challenge, Int. J. Vaccine Res., 1, 6; doi: 10.15226/2473-2176/1/2/ 00106.

    Google Scholar 

  28. Palmer, K. E., Benko, A., Doucette, S. A., Cameron, T. I., Foster, T., Hanley K. M., McCormick, A. A., McCulloch, M., Pogue, G. P., Smith, M. L., and Christensen, N. D. (2006) Protection of rabbits against cutaneous papillomavirus infection using recombinant tobacco mosaic virus containing L2 capsid epitopes, Vaccine, 24, 5516–5525; doi: 10.1016/j.vaccine.2006.04.058.

    Article  CAS  Google Scholar 

  29. Jiang, L., Li, Q., Li, M., Zhou, Z., Wu, L., Fan, J., Zhang, Q., Zhu, H., and Xu, Z. (2006) A modified TMV-based vector facilitates the expression of longer foreign epitopes in tobacco, Vaccine, 24, 109–115; doi: 10.1016/j.vaccine.2005.09.060.

    Article  CAS  Google Scholar 

  30. Fitchen, J., Beachy R N., and Hein, M. B. (1995) Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response, Vaccine, 13, 1051–1057; doi: 10.1016/0264-410x(95)00075-c.

    Article  CAS  Google Scholar 

  31. Frolova, O. Y., Petrunia, I. V., Komarova, T. V., Kosorukov, V. S., Sheval, E. V, Gleba, Y. Y., and Dorokhov, Y. L. (2010) Lrastuzumab-binding peptide display by tobacco mosaic virus, Virology, 407, 7–13; doi: 10.1016/j.virol.2010.08.005.

    Article  CAS  Google Scholar 

  32. Koo, M., Bendahmane, M., Lettieri, G. A., Paoletti, A. D., Lane, L. E., Fitchen, J. H, Buchmeier, M. J., and Beachy, R. N. (1999) Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope, Proc. Natl. Acad. Sci. USA, 96, 7774–7779; doi: 10.1073/pnas.96.14.7774.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Gasanova.

Ethics declarations

Ethical approval. This article does not contain description of studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 2, pp. 260-271.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-137, December 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasanova, T.V., Koroleva, A.A., Skurat, E.V. et al. Complexes Formed via Bioconjugation of Genetically Modified TMV Particles with Conserved Influenza Antigen: Synthesis and Characterization. Biochemistry Moscow 85, 224–233 (2020). https://doi.org/10.1134/S0006297920020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920020091

Keywords

Navigation