Skip to main content
Log in

Granzymes and Mitochondria

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytotoxic T lymphocytes and natural killer cells eliminate infected cells from the organism by triggering programmed cell death (apoptosis). The contents of the lytic granules of killer cells, including pore-forming proteins perforins and proteolytic enzymes granzymes, are released with the following penetration of the released proteins into the target cells. Granzyme B initiates mitochondria-dependent apoptosis via (i) proapoptotic Bid protein, (ii) Mcl-1 and Bim proteins, or (iii) p53 protein. As a result, cytochrome c is released from the mitochondria into the cytoplasm, causing formation of apoptosomes that initiate the proteolytic cascade of caspase activation. Granzymes M, H, and F cause cell death accompanied by the cytochrome c release from the mitochondria. Granzyme A induces generation of reactive oxygen species (ROS), which promotes translocation of the endoplasmic reticulum-associated SET complex to the nucleus where it is cleaved by granzyme A, leading to the activation of nucleases that catalyze single-strand DNA breaks. Granzymes A and B penetrate into the mitochondria and cleave subunits of the respiratory chain complex I. One of the complex I subunits is also a target for caspase-3. Granzyme-dependent damage to complex I leads to the ROS generation and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FeS cluster:

iron–sulfur cluster

FMN:

flavin mononucleotide

GAAD:

granzyme A-activated DNase

NK cell:

natural killer cell

O—̣2 :

superoxide anion radical

ROS:

reactive oxygen species

Δμ̄H+ :

proton electrochemical gradient

Δψ:

transmembrane difference in electric potential

References

  1. Cullen, S. P., and Martin, S. J. (2008) Mechanisms of granule-dependent killing, Cell Death Differ., 15, 251–262. doi: 10.1038/sj.cdd.4402244.

    Article  CAS  PubMed  Google Scholar 

  2. Cullen, S. P., Brunet, M., and Martin, S. J. (2010) Granzymes in cancer and immunity, Cell Death Differ., 17, 616–623. doi: 10.1038/cdd.2009.206.

    Article  CAS  PubMed  Google Scholar 

  3. Wajant, H. (2014) Principles and mechanisms of CD95 activation, Biol. Chem., 395, 1401–1416. doi: 10.1515/hsz-2014-0212.

    Article  CAS  PubMed  Google Scholar 

  4. Siegmund, D., Lang, I., and Wajant, H. (2017) Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2, FEBS J., 284, 1131–1159. doi: 10.1111/febs.13968.

    Article  CAS  PubMed  Google Scholar 

  5. Tummers, B., and Green, D. R. (2017) Caspase-8: regulating life and death, Immunol. Rev., 277, 76–89. doi: 10.1111/imr.12541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol., 15, 135–147. doi: 10.1038/nrm3737.

    Article  CAS  Google Scholar 

  7. Tsuchiya, Y., Nakabayashi, O., and Nakano, H. (2015) FLIP the switch: regulation of apoptosis and necroptosis by cFLIP, Int. J. Mol. Sci., 16, 30321–30341. doi: 10.3390/ijms161226232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y., Chen, X., Gueydan, C., and Han, J. (2018) Plasma membrane changes during programmed cell deaths, Cell Res., 28, 9–21. doi: 10.1038/cr.2017.133.

    Article  CAS  PubMed  Google Scholar 

  9. Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M., and Dustin, M. L. (1999) The immunological synapse: a molecular machine controlling T cell activation, Science, 285, 221–227. doi: 10.1126/science.285.5425.221.

    Article  CAS  PubMed  Google Scholar 

  10. Rousalova, I., and Krepela, E. (2010) Granzyme B-induced apoptosis in cancer cells and its regulation (review), Int. J. Oncol., 37, 1361–1378. doi: 10.3892/ijo-00000788.

    CAS  PubMed  Google Scholar 

  11. Woodsworth, D. J., Dunsing, V., and Coombs, D. (2015) Design parameters for granzyme-mediated cytotoxic lymphocyte target-cell killing and specificity, Biophys. J., 109, 477–488. doi: 10.1016/j.bpj.2015.06.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Podack, E. R., and Munson, G. P. (2016) Killing of microbes and cancer by the immune system with three mammalian pore-forming killer proteins, Front. Immunol., 7, 464, doi: 10.3389/fimmu.2016.00464.

  13. Stewart, S. E., D’Angelo, M. E., and Bird, P. I. (2012) Intercellular communication via the endo-lysosomal system: translocation of granzymes through membrane barriers, Biochim. Biophys. Acta, 1824, 59–67. doi: 10.1016/j.bbapap.2011.05.020.

    Article  CAS  PubMed  Google Scholar 

  14. Voskoboinik, I., Whisstock, J. C., and Trapani, J. A. (2015) Perforin and granzymes: function, dysfunction and human pathology, Nat. Rev. Immunol., 15, 388–400. doi: 10.1038/nri3839.

    Article  CAS  PubMed  Google Scholar 

  15. Andrin, C., Pinkoski, M. J., Burns, K., Atkinson, E. A., Krahenbuhl, O., Hudig, D., Fraser, S. A., Winkler, U., Tschopp, J., Opas, M., Bleackley, R. C., and Michalak, M. (1998) Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules, Biochemistry, 37, 10386–10394. doi: 10.1021/bi980595z.

    Article  CAS  PubMed  Google Scholar 

  16. Carafoli, E., and Krebs, J. (2016) Why calcium? How calcium became the best communicator, J. Biol. Chem., 291, 20849–20857. doi: 10.1074/jbc.R116.735894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davidovich, P., Kearney, C. J., and Martin, S. J. (2014) Inflammatory outcomes of apoptosis, necrosis and necroptosis, Biol. Chem., 395, 1163–1171. doi: 10.1515/hsz-2014-0164.

    Article  CAS  PubMed  Google Scholar 

  18. Thiery, J., Keefe, D., Boulant, S., Boucrot, E., Walch, M., Martinvalet, D., Goping, I. S., Bleackley, R. C., Kirchhausen, T., and Lieberman, J. (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells, Nat. Immunol., 12, 770–777. doi: 10.1038/ni.2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Masson, D., Nabholz, M., Estrade, C., and Tschopp, J. (1986) Granules of cytolytic T-lymphocytes contain two serine esterases, EMBO J., 5, 1595–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masson, D., and Tschopp, J. (1987) A family of serine esterases in lytic granules of cytolytic T lymphocytes, Cell, 49, 679–685. doi: 10.1016/0092-8674(87)90544-7.

    Article  CAS  PubMed  Google Scholar 

  21. Susanto, O., Trapani, J. A., and Brasacchio, D. (2012) Controversies in granzyme biology, Tissue Antigens, 80, 477–487. doi: 10.1111/tan.12014.

    Article  CAS  PubMed  Google Scholar 

  22. Vahedi, F., Fraleigh, N., Vlasschaert, C., McElhaney, J., and Hanifi-Moghaddam, P. (2014) Human granzymes: related but far apart, Med. Hypotheses, 83, 688–693. doi: 10.1016/j.mehy.2014.09.019.

    Article  CAS  PubMed  Google Scholar 

  23. Trapani, J. A. (2001) Granzymes: a family of lymphocyte granule serine proteases, Genome Biol., 2, reviews3014.1-3014.7, doi: 10.1186/gb-2001-2-12-reviews3014.

    Article  Google Scholar 

  24. Sutton, V. R., Wowk, M. E., Cancilla, M., and Trapani, J. A. (2003) Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors, Immunity, 18, 319–329. doi: 10.1016/s1074-7613(03)00050-5.

    Article  CAS  PubMed  Google Scholar 

  25. Goping, I. S., Barry, M., Liston, P., Sawchuk, T., Constantinescu, G., Michalak, K. M., Shostak, I., Roberts, D. L., Hunter, A. M., Korneluk, R., and Bleackley, R. C. (2003) Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition, Immunity, 18, 355–365. doi: 10.1016/s1074-7613(03)00032-3.

    Article  CAS  PubMed  Google Scholar 

  26. Wowk, M. E., and Trapani, J. A. (2004) Cytotoxic activity of the lymphocyte toxin granzyme B, Microbes Infect., 6, 752–758. doi: 10.1016/j.micinf.2004.03.008.

    Article  CAS  PubMed  Google Scholar 

  27. Heibein, J. A., Goping, I. S., Barry, M., Pinkoski, M. J., Shore, G. C., Green, D. R., and Bleackley, R. C. (2000) Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax, J. Exp. Med., 192, 1391–1402. doi: 10.1084/jem.192.10.1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, G. Q., Wieckowski, E., Goldstein, L. A., Gastman, B. R., Rabinovitz, A., Gambotto, A., Li, S., Fang, B., Yin, X. M., and Rabinowich, H. (2001) Resistance to granzyme B-mediated cytochrome c release in Bak-deficient cells, J. Exp. Med., 194, 1325–1337. doi: 10.1084/jem.194.9.1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cosentino, K., and Garcia-Saez, A. J. (2017) Bax and Bak pores: are we closing the circle? Trends Cell Biol., 27, 266–275. doi: 10.1016/j.tcb.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  30. Kale, J., Osterlund, E. J., and Andrews, D. W. (2018) BCL-2 family proteins: changing partners in the dance towards death, Cell Death Differ., 25, 65–80. doi: 10.1038/cdd.2017.186.

    Article  CAS  PubMed  Google Scholar 

  31. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell, 91, 479–489. doi: 10.1016/s0092-8674(00)80434-1.

    Article  CAS  PubMed  Google Scholar 

  32. Li, J., and Yuan, J. (2008) Caspases in apoptosis and beyond, Oncogene, 27, 6194–6206. doi: 10.1038/onc.2008.297.

    Article  CAS  PubMed  Google Scholar 

  33. Dorstyn, L., Akey, C. W., and Kumar, S. (2018) New insights into apoptosome structure and function, Cell Death Differ., 25, 1194–1208. doi: 10.1038/s41418-017-0025-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., and Alnemri, E. S. (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol. Cell, 1, 949–957. doi: 10.1016/s1097-2765(00)80095-7.

    Article  CAS  PubMed  Google Scholar 

  35. Chang, H. Y., and Yang, X. (2000) Proteases for cell suicide: functions and regulation of caspases, Microbiol. Mol. Biol. Rev., 64, 821–846. doi: 10.1128/mmbr.64.4.821-846.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Y., Zhou, M., Hu, Q., Bai, X.-C., Huang, W., Scheres, S. H. W., and Shi, Y. (2017) Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme, Proc. Natl. Acad. Sci. USA, 114, 1542–1547. doi: 10.1073/pnas.1620626114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Darmon, A. J., Nicholson, D. W., and Bleackley, R. C. (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B, Nature, 377, 446–448. doi: 10.1038/377446a0.

    Article  CAS  PubMed  Google Scholar 

  38. Quan, L. T., Tewari, M., O’Rourke, K., Dixit, V., Snipas, S. J., Poirier, G. G., Ray, C., Pickup, D. J., and Salvesen, G. S. (1996) Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B, Proc. Natl. Acad. Sci. USA, 93, 1972–1976. doi: 10.1073/pnas.93.5.1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luthi, A. U., and Martin, S. J. (2007) The CASBAH: a searchable database of caspase substrates, Cell Death Differ., 14, 641–650. doi: 10.1038/sj.cdd.4402103.

    Article  CAS  PubMed  Google Scholar 

  40. Julien, O., and Wells, J. A. (2017) Caspases and their substrates, Cell Death Differ., 24, 1380–1389. doi: 10.1038/cdd.2017.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, J., Goldstein, L. A., Gastman, B. R., Froelich, C. J., Yin, X. M., and Rabinowich, H. (2004) Degradation of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic events, J. Biol. Chem., 279, 22020–22029. doi: 10.1074/jbc.M313234200.

    Article  CAS  PubMed  Google Scholar 

  42. Han, J., Goldstein, L. A., Gastman, B. R., Rabinovitz, A., and Rabinowich, H. (2005) Disruption of Mcl-1⋅Bim complex in granzyme B-mediated mitochondrial apoptosis, J. Biol. Chem., 280, 16383–16392. doi: 10.1074/jbc.M411377200.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumura, S., Van De Water, J., Kita, H., Coppel, R. L., Tsuji, T., Yamamoto, K., Ansari, A. A., and Gershwin, M. E. (2002) Contribution to antimitochondrial antibody production: cleavage of pyruvate dehydrogenase complex-E2 by apoptosis-related proteases, Hepatology, 35, 14–22. doi: 10.1053/jhep.2002.30280.

    Article  CAS  PubMed  Google Scholar 

  44. Siddiqui, W. A., Ahad, A., and Ahsan, H. (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update, Arch. Toxicol., 89, 289–317. doi: 10.1007/s00204-014-1448-7.

    Article  CAS  PubMed  Google Scholar 

  45. Sarosiek, K. A., Chi, X., Bachman, J. A., Sims, J. J., Montero, J., Patel, L., Flanagan, A., Andrews, D. W., Sorger, P., and Letai, A. (2013) BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response, Mol. Cell, 51, 751–765. doi: 10.1016/j.molcel.2013.08.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ben Safta, T., Ziani, L., Favre, L., Lamendour, L., Gros, G., Mami-Chouaib, F., Martinvalet, D., Chouaib, S., and Thiery, J. (2015) Granzyme B-activated p53 interacts with Bcl-2 to promote cytotoxic lymphocyte-mediated apoptosis, J. Immunol., 194, 418–428. doi: 10.4049/jimmunol.1401978.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, S., Xia, P., Shi, L., and Fan, Z. (2012) FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade, Cell Death Differ., 19, 605–615. doi: 10.1038/cdd.2011.130.

    Article  CAS  PubMed  Google Scholar 

  48. Hou, Q., Zhao, T., Zhang, H., Lu, H., Zhang, Q., Sun, L., and Fan, Z. (2008) Granzyme H induces apoptosis of target tumor cells characterized by DNA fragmentation and Bid-dependent mitochondrial damage, Mol. Immunol., 45, 1044–1055. doi: 10.1016/j.molimm.2007.07.032.

    Article  CAS  PubMed  Google Scholar 

  49. Ewen, C. L., Kane, K. P., and Bleackley, R. C. (2013) Granzyme H induces cell death primarily via a Bcl-2-sensitive mitochondrial cell death pathway that does not require direct Bid activation, Mol. Immunol., 54, 309–318. doi: 10.1016/j.molimm.2012.12.020.

    Article  CAS  PubMed  Google Scholar 

  50. Shi, L., Wu, L., Wang, S., and Fan, Z. (2009) Granzyme F induces a novel death pathway characterized by Bid-independent cytochrome c release without caspase activation, Cell Death Differ., 16, 1694–1706. doi: 10.1038/cdd.2009.101.

    Article  CAS  PubMed  Google Scholar 

  51. Van Damme, P., Maurer-Stroh, S., Hao, H., Colaert, N., Timmerman, E., Eisenhaber, F., Vandekerckhove, J., and Gevaert, K. (2010) The substrate specificity profile of human granzyme A, Biol. Chem., 391, 983–997. doi: 10.1515/BC.2010.096.

    PubMed  Google Scholar 

  52. Beresford, P. J., Zhang, D., Oh, D. Y., Fan, Z., Greer, E. L., Russo, M. L., Jaju, M., and Lieberman, J. (2001) Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks, J. Biol. Chem., 276, 43285–43293. doi: 10.1074/jbc.M108137200.

    Article  CAS  PubMed  Google Scholar 

  53. Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., and Lieberman, J. (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor, Cell, 112, 659–672. doi: 10.1016/s0092-8674(03)00150-8.

    Article  CAS  PubMed  Google Scholar 

  54. Martinvalet, D., Zhu, P., and Lieberman, J. (2005) Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis, Immunity, 22, 355–370. doi: 10.1016/j.immuni.2005.02.004.

    Article  CAS  PubMed  Google Scholar 

  55. Grivennikova, V. G., and Vinogradov, A. D. (2003) Mitochondrial complex I, Uspekhi Biol. Khim., 43, 19–58.

    CAS  Google Scholar 

  56. Zhu, J., Vinothkumar, K. R., and Hirst, J. (2016) Structure of mammalian respiratory complex I, Nature, 536, 354–358. doi: 10.1038/nature19095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fiedorczuk, K., Letts, J. A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L. A. (2016) Atomic structure of the entire mammalian mitochondrial complex I, Nature, 538, 406–410. doi: 10.1038/nature19794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinvalet, D., Dykxhoorn, D. M., Ferrini, R., and Lieberman, J. (2008) Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death, Cell, 133, 681–692. doi: 10.1016/j.cell.2008.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jacquemin, G., Margiotta, D., Kasahara, A., Bassoy, E. Y., Walch, M., Thiery, J., Lieberman, J., and Martinvalet, D. (2015) Granzyme B-induced mitochondrial ROS are required for apoptosis, Cell Death Differ., 22, 862–874. doi: 10.1038/cdd.2014.180.

    Article  CAS  PubMed  Google Scholar 

  60. Ricci, J. E., Munoz-Pinedo, C., Fitzgerald, P., Bailly-Maitre, B., Perkins, G. A., Yadava, N., Scheffler, I. E., Ellisman, M. H., and Green, D. R. (2004) Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain, Cell, 117, 773–786. doi: 10.1016/j.cell.2004.05.008.

    Article  CAS  PubMed  Google Scholar 

  61. Hirst, J., and Roessler, M. M. (2016) Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I, Biochim. Biophys. Acta, 1857, 872–883. doi: 10.1016/j.bbabio.2015.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodenburg, R. J. (2016) Mitochondrial complex I-linked disease, Biochim. Biophys. Acta, 1857, 938–945. doi: 10.1016/j.bbabio.2016.02.012.

    Article  CAS  PubMed  Google Scholar 

  63. Chiusolo, V., Jacquemin, G., Yonca Bassoy, E., Vinet, L., Liguori, L., Walch, M., Kozjak-Pavlovic, V., and Martinvalet, D. (2017) Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis, Cell Death Differ., 24, 747–758. doi: 10.1038/cdd.2017.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinvalet, D. (2019) Mitochondrial entry of cytotoxic proteases: a new insight into the granzyme B cell death pathway, Oxid. Med. Cell. Longev., 2019, 9165214, doi: 10.1155/2019/9165214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Grivennikova, V. G., and Vinogradov, A. D. (2006) Generation of superoxide by the mitochondrial complex I, Biochim. Biophys. Acta, 1757, 553–561. doi: 10.1016/ j.bbabio.2006.03.013.

    Article  CAS  PubMed  Google Scholar 

  66. Murphy, M. P. (2009) How mitochondria produce reactive oxygen species, Biochem. J., 417, 1–13. doi: 10.1042/BJ20081386.

    Article  CAS  PubMed  Google Scholar 

  67. Korge, P., Calmettes, G., and Weiss, J. N. (2016) Reactive oxygen species production in cardiac mitochondria after complex I inhibition: modulation by substrate-dependent regulation of the NADH/NAD+ ratio, Free Radic. Biol. Med., 96, 22–33. doi: 10.1016/j.freeradbiomed.2016.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robb, E. L., Hall, A. R., Prime, T. A., Eaton, S., Szibor, M., Viscomi, C., James, A. M., and Murphy, M. P. (2018) Control of mitochondrial superoxide production by reverse electron transport at complex I, J. Biol. Chem., 293, 9869–9879. doi: 10.1074/jbc.RA118.003647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shidoji, Y., Hayashi, K., Komura, S., Ohishi, N., and Yagi, K. (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation, Biochem. Biophys. Res. Commun., 264, 343–347. doi: 10.1006/bbrc.1999.1410.

    Article  CAS  PubMed  Google Scholar 

  70. Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., Kini, V., Vlasova, I. I., Zhao, Q., Zou, M., Di, P., Svistunenko, D. A., Kurnikov, I. V., and Borisenko, G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nat. Chem. Biol., 1, 223–232. doi: 10.1038/nchembio727.

    Article  CAS  PubMed  Google Scholar 

  71. Lucken-Ardjomande, S., and Martinou, J.-C. (2008) Granzyme A, a stealth killer in the mitochondrion, Cell, 133, 568–570. doi: 10.1016/j.cell.2008.04.031.

    Article  CAS  PubMed  Google Scholar 

  72. Dotiwala, F., Mulik, S., Polidoro, R. B., Ansara, J. A., Burleigh, B. A., Walch, M., Gazzinelli, R. T., and Lieberman, J. (2016) Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites, Nat. Med., 22, 210–216. doi: 10.1038/nm.4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kang, S., Brown, H. M., and Hwang, S. (2018) Direct antiviral mechanisms of interferon-gamma, Immune Netw., 18, e33, doi: 10.4110/in.2018.18.e33.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hansen, T. H., and Bouvier, M. (2009) MHC class I antigen presentation: learning from viral evasion strategies, Nat. Rev. Immunol., 9, 503–513. doi: 10.1038/nri2575.

    Article  CAS  PubMed  Google Scholar 

  75. Vdovin, A. S., Filkin, S. Y., Yefimova, P. R., Sheetikov, S. A., Kapranov, N. M., Davydova, Y. O., Egorov, E. S., Khamaganova, E. G., Drokov, M. Y., Kuzmina, L. A., Parovichnikova, E. N., Efimov, G. A., and Savchenko, V. G. (2016) Recombinant MHC tetramers for isolation of virus-specific CD8+ cells from healthy donors: potential approach for cell therapy of post-transplant cytomegalovirus infection, Biochemistry (Moscow), 81, 1371–1383. doi: 10.1134/S0006297916110146.

    Article  CAS  Google Scholar 

  76. Biron, C. A., and Brossay, L. (2001) NK cells and NKT cells in innate defense against viral infections, Curr. Opin. Immunol., 13, 458–464. doi: 10.1016/s0952-7915(00)00241-7.

    Article  CAS  PubMed  Google Scholar 

  77. Ruella, M., and Kalos, M. (2014) Adoptive immunotherapy for cancer, Immunol. Rev., 257, 14–38. doi: 10.1111/imr.12136.

    Article  PubMed  Google Scholar 

  78. Kim, N., Lee, H. H., Lee, H. J., Choi, W. S., Lee, J., and Kim, H. S. (2019) Natural killer cells as a promising therapeutic target for cancer immunotherapy, Arch. Pharm. Res., 42, 591–606. doi: 10.1007/s12272-019-01143-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. V. D. Samuilov for reading the manuscript and valuable comments.

Funding

This work was financed by the Research Support (NIR) Program of the Federal Budget (NIR registration number at the Center for Information Technologies and Systems AAAA-A16-116021660081-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Kiselevsky.

Ethics declarations

Compliance with ethical standards. This article does not contain description of studies involving humans and animals performed by the author.

Additional information

Conflict of interest. The author declares no conflict of interest.

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 2, pp. 155–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselevsky, D.B. Granzymes and Mitochondria. Biochemistry Moscow 85, 131–139 (2020). https://doi.org/10.1134/S0006297920020017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920020017

Keywords

Navigation