Skip to main content
Log in

Electrostatic Interaction between Soy Proteins and Pectin in O/W Emulsions Stabilization by Ultrasound Application

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Proteins and polysaccharides can play the part of emulsifiers and stabilizers, yet emulsions stabilization may be improved through a protein:polysaccharide complexation based on electrostatic interactions. The chosen homogenization method and the protein:polysaccharide ratio at an adequate pH may affect complexation and its ability as an emulsion stabilizer. We evaluate the effects of ultrasound homogenization and soy protein isolate (SPI) and high methoxyl pectin (PEC) ratio to generate protein:polysaccharide complexes by electrostatic interactions. Moreover, emulsions stabilized by SPI:PEC complexes with 5, 10, 15 % soybean oil contents were evaluated after sonication to assess emulsions stability improvements. SPI and PEC showed strong interaction at pH 3.5, with higher complexation at higher protein ratio (4:1). Sonication reduced complex particle size, creating homogeneous and shear-thinning systems. SPI:PEC 1:1 emulsions had Newtonian behavior, smaller droplets, and remained stable for seven days. At SPI:PEC ratio of 4:1 emulsions had shear-thinning behavior, yet larger droplets and high creaming indexes, thus indicating destabilization by gravitational separation with cream phase and showing droplets with bimodal distribution (1.3-200 μm). Through heating-cooling ramps, temperature effect on rheological behavior of emulsions and pure biopolymers was assessed. 4:1 emulsions showed rheological behavior with a predominant effect of SPI, whereas 1:1 emulsions predominantly showed pectin characteristics. Emulsion stability was greatly affected by SPI:PEC ratio, since the pectin proportion had a strong influence on the emulsions behavior. Moreover, sonication was a fundamental parameter to increase SPI:PEC complexes effectiveness as emulsion stabilizers and use these systems to formulate foods with low oil contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.J. McClements, Food emulsions: principles, practice, and techniques, 2nd edn. (CRC Press, Washington, 2005a), 632pp

    Google Scholar 

  2. K.M. Albano, A.L.F. Cavallieri, V.R. Nicoletti, Food Ver Int. 35(1), 54–89 (2019)

    CAS  Google Scholar 

  3. M. Evans, I. Ratcliffe, P.A. Williams, Curr Opin Colloid In. 18(4), 272–282 (2013)

    CAS  Google Scholar 

  4. E. Dickinson, Introduction to Food Colloids, 1st edn. (Oxford University Press, Oxford, 1992), 216pp

    Google Scholar 

  5. F.O. Bobbio, P.A. Bobbio, Manual de laboratório de química de alimentos, 2nd edn. (Varela, São Paulo, 2003), p. 63

    Google Scholar 

  6. E. Dickinson, in: Food colloids, biopolymers and materials, ed. By E. Dickinson, T. Van Vliet (Royal Society of Chemistry, Wageningen, 2003) p. 68–83

  7. S.M.H. Hosseini, Z.E. Djomeh, S.H. Razavi, A.A. Moosavi-Movahedi, A.A. Saboury, M.S. Atri, P.V. Meeren, Food Hydrocolloid 32, 235–244 (2013)

    CAS  Google Scholar 

  8. J. Chandrapala, C. Oliver, S. Kentish, M. Ashokkumar, Ultrason. Sonochem. 19(5), 975–983 (2012)

    CAS  PubMed  Google Scholar 

  9. C. Arzeni, K. Martínez, P. Zema, A. Arias, O.E. Pérez, A.M.R. Pilosof, J. Food Eng. 108(3), 463–472 (2012)

    CAS  Google Scholar 

  10. L. Gordon, A.M.R. Pilosof, Food Biophys. 5(3), 203–210 (2010)

    Google Scholar 

  11. D. Pingret, A.-S. Fabiano-Tixier, E. Petitcolas, J.-P. Canselier, F. Chemat, J. Food Sci. 76(2), C287–C292 (2011)

    CAS  PubMed  Google Scholar 

  12. O. Kaltsa, C. Michon, S. Yanniotis, I. Mandala, I. Ultrason Sonochem. 20(3), 881–891 (2013)

    CAS  PubMed  Google Scholar 

  13. K.M. Albano, V.R. Nicoletti, Ultrason. Sonochem. 41, 562–571 (2018)

    CAS  PubMed  Google Scholar 

  14. P. Moser, V. R. N. Telis, N. A. Neves, E. García-Romero, , I. Hermosín-Gutiérrez. Food Chem., 214(1), 308–318 (2017)

    CAS  PubMed  Google Scholar 

  15. J.V.M. Benetti, J.T.P. Silva, V.R. Nicoletti, Food Res. Int. 122, 383–391 (2019)

    CAS  PubMed  Google Scholar 

  16. B. Manion, M. Correding, J. Food Sci. 71(8), 343–349 (2006)

    Google Scholar 

  17. S. Tömösközi, R. Lásztity, R. Haraszi, O. Baticz, Nahrung. 45(6), 399–401 (2001)

    PubMed  Google Scholar 

  18. M. Lam, R. Shen, P. Paulsen, M. Corredig, M. Food Res Int. 40(1), 101–110 (2007)

    CAS  Google Scholar 

  19. T. Turquois, M. Rinaudo, F.R. Taravel, A. Heyraud, Food Hydrocolloid. 13(3), 255–262 (1999)

    CAS  Google Scholar 

  20. U.S. Schmidt, L. Schütz, H.P. Schuchmann, Food Hydrocolloid. 62, 288–298 (2017)

    CAS  Google Scholar 

  21. W.-X. Jiang, J-R. Qi, Y.-X. Huang, Y. Zhang, X.-Q.Yang. Carbohydr. Polym. 229, 115420, 2020

  22. A. Ström, E. Schuster, S.M. Goh, Carbohydr. Polym. 113, 336–343 (2014)

    PubMed  Google Scholar 

  23. M.L.F. Freitas, K.M. Albano, V.R.N. Telis, Polímeros 27(1), 62–67 (2017)

    Google Scholar 

  24. O. K. Simo, Y. Mao, T. Tokle, E. A. Decker, D. J McClements, Food Res Int. 48(2), 337–345 (2012)

  25. T. Morita, R.M.V. Assumpção, Manual de Soluções, reagentes e solventes, 2nd edn. (Blucher, São Paulo, 2007), 627pp

    Google Scholar 

  26. P.H.M. Marfil, Microencapsulação de óleo de palma por coacervação complexa em matrizes de gelatina/goma arábica e gelatina/alginato. Tese apresentada para obtenção do título de doutor (Doctoral thesis - IBILCE/UNESP, São José do Rio Preto, SP, 2014) p. 135

  27. A.S. Prata, C.R.F. Grosso, Estudo dos parâmetros físico-químicos envolvidos na formação de microcápsulas produzidas por coacervação complexa (Doctoral thesis -UNICAMP, Campinas, 2006), p. 267

    Google Scholar 

  28. K.M. Albano, C.M.L. Franco, V.R.N. Telis, Food Hydrocolloid. 40, 30–43 (2014)

    CAS  Google Scholar 

  29. A. Lamprecht, U.F. Schäfer, C.M. Lehr, J. Microencapsul. 18(3), 347–357 (2000)

    Google Scholar 

  30. F. A Perrechil, R. L. Cunha, Food Hydrocolloid. 30(2), 606–613 (2013)

  31. AOAC. Official method of analysis, 18th edn. (Association of Official Analytical Chemists, Washington, 2005)

  32. E.G. Bligh, W.J. Dyer, Can J Biochem Phys. 37(8), 911–917 (1959)

    CAS  Google Scholar 

  33. T. Tran, D. Rousseau, Food Hydrocolloid. 30(1), 382–392 (2013)

    CAS  Google Scholar 

  34. W. S Chen, W. G. Soucie, J Am Oil Chem Soc. 63(10), 1346–1350 (1986)

  35. C. Thies, How to Make Microcapsules: Lecture and Laboratory Manual (St. Louis, Missouri, 1995)

    Google Scholar 

  36. D.P. Jaramillo, R.F. Roberts, J.N. Coupland, Food Res. Int. 44(4), 911–916 (2011)

    CAS  Google Scholar 

  37. F.N. Souza, C.G.M.S. Cordeiro, M.C.E. Ribeiro, K.S. Chaves, M.L. Gigante, C.R.F. Grosso, Food Res. Int. 49(1), 560–566 (2012)

    CAS  Google Scholar 

  38. H. Hu, J. Wu, E.C.Y. Li-Chan, L. Zhu, F. Zhang, X. Xu, G. Fan, L. Wang, X. Huang, S. Pan, Food Hydrocolloid. 30(2), 647–655 (2013)

    CAS  Google Scholar 

  39. Z. Wang, X. X. Sun, Z. X. Lian, X. X. Wang, J. Zhou, Z-S. Ma, J. Food Eng. 114(2), 183–191 (2013)

  40. V. Schmidt, C. Giacomelli, V. Soldi, Polym Degrad Stabil. 87(1), 25–31 (2005)

    CAS  Google Scholar 

  41. Y. Yang, W.S. Cui, J. Gong, Q. Guo, Q. Wang, Y. Hua, Food Hydrocolloid. 48, 155–164 (2015)

    CAS  Google Scholar 

  42. S. Krimm, J. Bandekar, Adv. Protein Chem. 38, 181–364 (1986)

    CAS  PubMed  Google Scholar 

  43. A. Fellah, P. Anjukandi, M.R. Waterland, M.A.K. Willians, Carbohyd Polym. 78(4), 847–853 (2009)

    CAS  Google Scholar 

  44. A. Synytsya, J. Copikova, P. Matejka, V. Machovic, Carbohyd Polym 54(1), 97–106 (2003)

    CAS  Google Scholar 

  45. T. A. Comunian, M. Thomazini, A. J. G., Alves, F. E. Matos Junior, J. C. C. Balieiro, C. S. Favaro-Trindade, Food Res Int. 52(1), 373–379 (2013)

  46. C. Kyomugasho, S. Christiaens, A. Shpigelman, A. M. V. Loey, M. E Hendrickx, Food Chem. 176, 82–90 (2015)

  47. R.I. Baeza, D.J. Carp, O.E. Pérez, A.M.R. Pilosof, Lwt-Food Sci Technol. 35(8), 741–747 (2002)

    CAS  Google Scholar 

  48. A.K. Stone, A. Teymurova, M.T. Nickerson, Food Biophys. 9(3), 203–212 (2014)

    Google Scholar 

  49. M.G. Semenova, V.S. Bolotina, A.P. Dmitrochenko, A.L. Leontiev, V.I. Polyakov, E.E. Braudo, V.B. Tolstoguzov, Carbohydr. Polym. 15(4), 367–385 (1991)

    CAS  Google Scholar 

  50. D.J. McClements, Crc Cr Rev Food Sci. 47(7), 611–649 (2007)

    CAS  Google Scholar 

  51. D.J. McClements, Langmuir. 21(21), 9777–9785 (2005b)

    CAS  PubMed  Google Scholar 

  52. S. E. Hill. In Methods of testing protein functionality, ed. By G. M. Hall (Blackie, New York, 1996), p. 153–179

  53. Y-H. Cho, D. J. McClements, Langmuir. 25(12) 6649–6657 (2009)

  54. D.J. McClements, Food Hydrocolloid. 14(2), 173–177 (2000)

    CAS  Google Scholar 

  55. M. E. D.A. Montalvo, V. A. Basante, M. S. Carvalho, Maxwell (PUC, Rio de Janeiro). Cap.2. https://doi.org/10.17771/PUCRio.acad.12535

  56. J.R.M.B. Vidal, Comportamento reológico da polpa de manga (Mangífera indica LKeitt) (Doctoral thesis -UNICAMP, Campinas, 2000), 159p

    Google Scholar 

  57. S. Damodaran, S. In, Química de Alimentos de Fennema, ed By O. R. Fennema, S. Damodaran, K. L. Parkin (Artmed, Porto Alegre, 2010), p. 179

    Google Scholar 

  58. P. H. M. Marfil, J. Telis-Romero, V. R. N. Telis, in Biopolymer Engineering in Food Processing, ed. By. V.R.N. Telis (CRC Press, USA, 2012), p.69–110

  59. C. I. Nindo, J. Tanga, J. R. Powers, P. S. Takhar, LWT, 40,(1), 292–299 (2007)

  60. F.S. Ortega, R.G. Pileggi, V.C. Pandolfelli, Cerâmica 45(295), 155–159 (1999)

    CAS  Google Scholar 

  61. A. R. Jambrak, V. Lelas, T. J. Mason, G. Krešic´, M. Badanjak, J Food Eng. 93(4), 386–393 (2009)

  62. M.C. Tan, N.L. Chin, Y.A. Yusof, F.S. Taipa, J. Abdullah, Int. Dairy J. 43, 7–14 (2015)

    CAS  Google Scholar 

  63. K. Yasumatsu, K. Sawada, S. Moritaka, M. Masaru, J. Toda, T. Wada, K. Ishii, Agric. Biol. Chem.36(5), 719–727 (1972)

    Google Scholar 

  64. K. R. Kuhn, C. S. F. Picone, R. L. Cunha, in Biopolymer Engineering in Food Processing, ed. By. V.R.N. Telis (CRC Press, USA, 2012), p. 111–145

  65. A. S. de. Souza, Efeito do tratamento térmico nas características de isolados proteicos de soja e de seus hidrolisados enzimáticos. (Master Dissertation UNICAMP, Campinas,2000), p.108

  66. C.Y. Takeiti, A.S. Souza, F.M. Netto, Brazilian Journal of Food Technology. 7(1), 87–101 (2004)

    CAS  Google Scholar 

  67. C. Puppo, N. Chapleau, F. Speroni, M. De Lamballerie-Anton, F. Michel, C. Añon, M. Anton, J Agr Food Chem. 52(6), 1564–1571 (2004)

    CAS  Google Scholar 

  68. S. Damodaran, J Agr Food Chem. 36(2), 262–269 (1988)

    CAS  Google Scholar 

  69. E. Doi, Trends Food Sci Tech. 4(1), 1–5 (1993)

    CAS  Google Scholar 

  70. K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocolloid. 39, 301–318 (2014)

    CAS  Google Scholar 

  71. B. German, S. Damodaran, J.E. Kinsella, J. Agric, Food Chem. 30(5), 807–811 (1982)

    CAS  Google Scholar 

  72. N. Kitabatake, M. Tahara, E. Doi, Agr Biol Chem Tokyo. 54(9), 2205–2212 (1990)

    CAS  Google Scholar 

  73. T.M. Bikbov, V.Y. Grinberg, H. Schmandke, T.S. Chaika, I.A. Vaintraub, V.B. Tolstoguzov, Colloid Polym. Sci. 259(5), 536–547 (1981)

    CAS  Google Scholar 

  74. T. Nagano, H. Mori, K. Nishinari, J Agr Food Chem. 42(7), 1415–1419 (1994a)

    CAS  Google Scholar 

  75. T. Nagano, T. Akasaka, K. Nishinari, Biopolymers. 34(10), 1303–1309 (1994b)

    CAS  Google Scholar 

  76. K. Liu, Soybeans: Chemistry, Technology, and Utilization (Aspen Publishers Inc., Gaithersburg, 1999), 532p

    Google Scholar 

  77. E.P. Ribeiro, E. Seravalli, Química de Alimentos, 2nd edn. (Blucher, Mauá, 2007), p. 50

    Google Scholar 

  78. P.X. Qi, D. Ren, Y. Xiao, P.M. Tomasula, J. Dairy Sci. 98(5), 2884–2897 (2015)

    CAS  PubMed  Google Scholar 

  79. K. Li, Q. Zhong, Food Hydrocolloid. 60, 11–20 (2016)

    CAS  Google Scholar 

  80. Y. Lu, N. Riyanto, L.K. Weavers, Ultrason. Sonochem. 9(4), 181–188 (2002)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Sao Paulo Research Foundation, FAPESP – Brazil [Procs. 2013/10842-9, 2014/02910-7] and the authors are grateful to DupontTM Danisco® Brasil Ltda and Tovani Benzaquen Ingredients for the donation of high methoxyl pectin and soy protein isolate, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kivia M. Albano.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, K.M., Cavallieri, Â.L.F. & Nicoletti, V.R. Electrostatic Interaction between Soy Proteins and Pectin in O/W Emulsions Stabilization by Ultrasound Application. Food Biophysics 15, 297–312 (2020). https://doi.org/10.1007/s11483-020-09625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09625-z

Keywords

Navigation