Skip to main content

Advertisement

Log in

The impact of second-order ionospheric delays on the ZWD estimation with GPS and BDS measurements

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Since millimeter accuracy is required in many GNSS applications such as real-time zenith wet delay (ZWD) estimation, the higher-order ionospheric delays on GNSS signals are no longer negligible. We calculated the second-order ionospheric delays (\(I_{2}\)) and analyzed the impact on the ZWD estimation with GPS-only and combined GPS/BDS observations. The undifferenced PPP model with fixed coordinates was used to estimate the ZWD and horizontal gradients. The method of blockwise sequential least squares was utilized to eliminate the receiver clock biases and compute the \(I_{2}\) impact on the ZWDs. The \(I_{2}\) delays on each GNSS satellite observations were calculated with the CODE final TEC map and the 12th generation of the international geomagnetic reference field (IGRF-12) model. The statistical results with the actual observation geometry show that the \(I_{2}\) delays can reach over 10 mm during the daytime, and the corresponding impact on the estimated ZWD can reach up to several millimeters. At station HKWS, the maximum \(I_{2}\) impact with GPS only reaches up to 3.1 mm and is still 2.4 mm when both GPS and BDS observations are used. The simulated \(I_{2}\) impact on the ZWD could reach several millimeters, even though the TEC and geomagnetic values were calculated from relatively moderate background models. Compared with the 5–10 mm precision of real-time ZWD estimation, the \(I_{2}\) delays must not be ignored, especially during high VTEC periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscripta Geodaetica 18(5):280

    Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res Atmos 97(D14):15787–15801

    Article  Google Scholar 

  • Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscripta Geodaetica 16(3):205–214

    Google Scholar 

  • Businger S, Chiswell SR, Bevis M, Duan J, Anthes RA, Rocken C, Ware RH, Exner M, Van Hove T, Solheim FS (1996) The promise of GPS in atmospheric monitoring. Bull Am Meteorol Soc 77(1):5–18. https://doi.org/10.1175/1520-0477

    Article  Google Scholar 

  • Cai C, Liu G, Yi Z, Cui X, Kuang C (2019) Effect analysis of higher-order ionospheric corrections on quad-constellation GNSS PPP. Meas Sci Technol 30(2):1–10

    Google Scholar 

  • Caissy M, Agrotis L, Weber G, Hernández-Pajares M, Hugentobler U (2013) Coming soon: the international GNSS real-time service. GPS World 23(6):52–58

    Google Scholar 

  • China Satellite Navigation Office (2018) Development of the BeiDou navigation satellite system (Version 3.0). http://www.beidou.gov.cn/xt/gfxz/201812/P020190117356387956569.pdf

  • Cui X, Yu Z, Tao B, Liu D (1982) Adjustment in surveying. Surveying Publishing House, Peking

    Google Scholar 

  • Da Rosa AV, Waldman H, Bendito J, Garriott OK (1973) Response of the ionospheric electron content to fluctuations in solar activity. J Atmos Terr Phys 35(8):1429–1442

    Article  Google Scholar 

  • Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS software version 5.2. Astronomical Institute, University of Bern, pp. 444–445. ftp://www.aiub.unibe.ch/BERN52/DOCU/DOCU52.pdf

  • Davis JL, Elgered G, Niell AE, Kuehn CE (1993) Ground-based measurement of gradients in the “wet” radio refractivity of air. Radio Sci 28(6):1003–1018

    Article  Google Scholar 

  • Ding W, Teferle FN, Kazmierski K, Laurichesse D, Yuan Y (2017) An evaluation of real-time troposphere estimation based on GNSS precise point positioning. J Geophys Res Atmos 122(5):2779–2790

    Article  Google Scholar 

  • Dousa J, Vaclavovic P (2014) Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv Sp Res 53(9):1347–1358

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32:L23311. https://doi.org/10.1029/2005GL024342

    Article  Google Scholar 

  • Garcia-Fernandez M, Desai SD, Butala MD, Komjathy A (2013) Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements. J Geophys Res Sp Phys 118(12):7864–7873

    Article  Google Scholar 

  • Gendt G, Dick G, Reigber C, Tomassini M, Liu Y, Ramatschi M (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Japan 82(1B):361–370

    Article  Google Scholar 

  • Guo YR, Kuo YH, Dudhia J, Parsons D, Rocken C (2000) Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon Weather Rev 128(3):619–643

    Article  Google Scholar 

  • Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geodesy 90(2):143–159

    Article  Google Scholar 

  • Hadas T et al (2017) Impact and implementation of higher-order ionospheric effects on precise GNSS applications. J Geophys Res Solid Earth 122(11):9420–9436

    Article  Google Scholar 

  • Hernández-Pajares M (2010) Ionospheric model for radio techniques. Chapter 9, Section 9.4 of Models for atmospheric propagation delays of IERS Conventions 2010. IERS Technical Note (36)

  • Hernández-Pajares M, Aragón-Ángel À, Defraigne P, Bergeot N, Prieto-Cerdeira R, García-Rigo A (2014) Distribution and mitigation of higher-order ionospheric effects on precise GNSS processing. J Geophys Res Solid Earth 119(4):3823–3837

    Article  Google Scholar 

  • Johnston G, Riddell A, Hausler G (2017) The International GNSS Service. In: Teunissen Peter JG, Montenbruck O (eds) Springer handbook of global navigation satellite systems, 1st edn. Springer International Publishing, Cham, pp 967–982. https://doi.org/10.1007/978-3-319-42928-1

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. https://doi.org/10.1029/2003GL017639

    Article  Google Scholar 

  • Kouba J (2009) A guide to using International GNSS Service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

  • Kuo YH, Guo YR, Westwater ER (1993) Assimilation of precipitable water measurements into a mesoscale numerical model. Mon Weather Rev 121(4):1215–1238. https://doi.org/10.1175/1520-0493(1993)121%3c1215:AOPWMI%3e2.0.CO;2

    Article  Google Scholar 

  • Lu C, Li X, Nilsson T, Ning T, Heinkelmann R, Ge M, Glaser S, Schuh H (2015) Real-time retrieval of precipitable water vapor from GPS and BDS observations. J Geodesy 89(9):843–856. https://doi.org/10.1007/s00190-015-0818-0

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res Solid Earth 101(B2):3227–3246

    Article  Google Scholar 

  • Ning T, Wang J, Elgered G, Dick G, Wickert J, Bradke M et al (2016) The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations. Atmos Meas Tech 9(1):79–92

    Article  Google Scholar 

  • Petrie EJ, King MA, Moore P, Lavallee DA (2010) A first look at the effects of ionospheric signal bending on a globally processed GPS network. J Geodesy 84(8):491–499. https://doi.org/10.1007/s00190-010-0386-2

    Article  Google Scholar 

  • Petrie EJ, Hernández-Pajares M, Spalla P, Moore P, King MA (2011) A review of higher order ionospheric refraction effects on dual frequency GPS. Surv Geophys 32(3):197–253

    Article  Google Scholar 

  • Rastogi RG, Sharma RP (1971) Ionospheric electron content at Ahmedabad (near the crest of equatorial anomaly) by using beacon satellite transmissions during half a solar cycle. Planet Sp Sci 19(11):1505–1517

    Article  Google Scholar 

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Part II: refraction corrections in satellite geodesy. Bull Geod 107(1):13–34

    Article  Google Scholar 

  • Schaer S, Gurtner W, Feltens J IONEX: the IONosphere Map EXchange Format Version 1. In: Dow JM, Kouba J, Springer TA (eds) Proceedings of the IGS Analysis Center Workshop, pp 233–247, Darmstadt, Germany, February 9–11, 1998. ESA/ESOC. URL ftp://igscb.jpl.nasa.gov/igscb/data/format/ionex1.pdf

  • Thébault E et al (2015) International geomagnetic reference field: the 12th generation. Earth Planets Sp 67(1):79

    Article  Google Scholar 

  • Warnant R, Pottiaux E (2000) The increase of the ionospheric activity as measured by GPS. Earth Planets Sp 52(11):1055–1060

    Article  Google Scholar 

  • Xu G (2003) A diagonalization algorithm and its application in ambiguity search. J GPS 2(1):35–41

    Article  Google Scholar 

  • Zhang Z, Guo F, Zhang X (2018) The effects of higher-order ionospheric terms on GPS tropospheric delay and gradient estimates. Remote Sens 10(10):1561. https://doi.org/10.3390/rs10101561

    Article  Google Scholar 

  • Zus F, Deng Z, Wickert J (2017) The impact of higher-order ionospheric effects on estimated tropospheric parameters in precise point positioning. Radio Sci 52(8):963–971

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010304), the National Science Foundation of China (Grant Nos. 41504023 and 41804033), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant Nos. CUGL170821 and CUGL180831), and the funds of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University (Grant No. 18-01-06). The authors would like to thank IGS and IAGA for providing GNSS observations, products and IGRF-12 model, which enable this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Fang, L., Wang, G. et al. The impact of second-order ionospheric delays on the ZWD estimation with GPS and BDS measurements. GPS Solut 24, 41 (2020). https://doi.org/10.1007/s10291-020-0954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-0954-8

Keywords

Navigation