Skip to main content
Log in

Large deformation analysis in the context of 3D compressible nonlinear elasticity using the VDQ method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, a new solution approach is developed to numerically compute large deformations of 3D hyperelastic solids based on the compressible nonlinear elasticity. The governing equations are derived by the minimum total potential energy principle, and the Neo-Hookean model is used for the hyperelastic character of material. One of the key novelties of the work is its formulation in which the tensor form of equations is replaced by an efficient matrix–vector form that can be readily utilized in the coding process. Moreover, the variational differential quadrature technique is adopted to arrive at the discretized governing equations in a direct way. Simple implementation, fast convergence rate, and computational efficiency are the main advantages of present approach. Through some examples, the accuracy and effectiveness of the proposed numerical approach are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belytschko T, Ong JSJ, Liu KW, Kennedy JM (1984) Comput Methods Appl Mech Eng 43:251–276

    Article  Google Scholar 

  2. Reese S, Wriggers P, Reddy BD (2000) Comput Struct 75:291–304

    Article  Google Scholar 

  3. Reese S, Wriggers P (2000) Int J Numer Methods Eng 48:79–109

    Article  Google Scholar 

  4. Reese S (2002) Int J Nonlinear Sci Numer Simul 3:1–33

    Article  MathSciNet  Google Scholar 

  5. Kasper EP, Taylor RL (2000) Comput Struct 75:251–260

    Article  Google Scholar 

  6. Wriggers P (2009) Mixed finite element methods—theory and discretization. Mixed finite element technologies. CISM courses and lectures. Springer, Wien, pp 131–177

    Chapter  Google Scholar 

  7. Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Int J Numer Methods Eng 101:305–328

    Article  Google Scholar 

  8. Lee CK, Angela Mihai L, Hale JS, Kerfriden P, Bordas SPA (2017) Comput Struct 182:540–555

    Article  Google Scholar 

  9. Angoshtari A, Faghih Shojaei M, Yavari A (2017) Comput Methods Appl Mech Eng 313:596–631

    Article  Google Scholar 

  10. Faghih Shojaei M, Yavari A (2018) J Comput Phys 361:247–279

    Article  MathSciNet  Google Scholar 

  11. Hauseux P, Hale JS, Cotin S, Bordas SPA (2018) Appl Math Model 62:86–102

    Article  MathSciNet  Google Scholar 

  12. Hauseux P, Hale JS, Bordas SPA (2017) PLoS One 12:e0189994

    Article  Google Scholar 

  13. Hauseux P, Hale JS, Bordas SPA (2017) Comput Methods Appl Mech Eng 318:917–936

    Article  Google Scholar 

  14. Breslavsky ID, Amabili M, Legrand M (2014) Int J Non-Linear Mech 58:30–40

    Article  Google Scholar 

  15. Breslavsky ID, Amabili M, Legrand M (2014) J Sound Vib 333:4668–4681

    Article  Google Scholar 

  16. Amabili M, Balasubramanian P, Breslavsky ID, Ferrari G, Garziera R, Riabova K (2016) J Sound Vib 385:81–92

    Article  Google Scholar 

  17. Breslavsky ID, Amabili M, Legrand M (2016) J Appl Mech 83:051002

    Article  Google Scholar 

  18. Amabili M, Breslavsky ID, Reddy JN (2019) Comput Methods Appl Mech Eng 346:841–861

    Article  Google Scholar 

  19. Amabili M (2018) Nonlinear mechanics of shells and plates: composite, soft and biological materials. Cambridge University Press, New York

    MATH  Google Scholar 

  20. Faghih Shojaei M, Ansari R (2017) Appl Math Model 49:705–738

    Article  MathSciNet  Google Scholar 

  21. Ansari R, Hasrati E, Shakouri AH, Bazdid-Vahdati M, Rouhi H (2018) Int J Non-Linear Mech 106:130–143

    Article  Google Scholar 

  22. Hasrati E, Ansari R, Torabi J (2018) Appl Math Model 53:653–672

    Article  MathSciNet  Google Scholar 

  23. Ansari R, Gholami R, Rouhi H (2019) Thin-Walled Struct 135:12–20

    Article  Google Scholar 

  24. Ansari R, Shahabodini A, Faghih Shojaei M (2016) Compos Struct 139:167–187

    Article  Google Scholar 

  25. Hasrati E, Ansari R, Rouhi H (2019) Int J Mech Sci 151:33–45

    Article  Google Scholar 

  26. Shahabodini A, Ansari R, Darvizeh M (2018) Compos Struct 185:728–747

    Article  Google Scholar 

  27. Hassani R, Ansari R, Rouhi H (2019) Int J Numer Methods Eng 118:345–370

    Article  Google Scholar 

  28. Hassani R, Ansari R, Rouhi H (2019) Int J Non-Linear Mech 116:39–54

    Article  Google Scholar 

  29. Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) Comput Methods Appl Mech Eng 197:2732–2762

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The discretization operator of \(\left[\kern-0.15em\left[ {\blacksquare } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }}\) computes the elements of field of \({\blacksquare }\) at the defined computational points in the domain of \({\mathfrak{C}}_{0}\) and discretizes in block form. The computational points are defined based on the Chebyshev distribution, and are discretized in the \(X_{1}\), \(X_{2}\) and \(X_{3}\) directions as follows:

$$\begin{aligned} {\mathbf{X}}_{1}^{{cheb}} = {\text{Chebyshev}} - {\text{distribution}}(\left[ {0,L_{1} } \right],n_{1} ), \hfill \\ {\mathbf{X}}_{2}^{{cheb}} = {\text{Chebyshev}} - {\text{distribution}}(\left[ {0,L_{2} } \right],n_{2} ), \hfill \\ {\mathbf{X}}_{3}^{{cheb}} = {\text{Chebyshev}} - {\text{distribution}}(\left[ {0,L_{3} } \right],n_{3} ), \hfill \\ \end{aligned}$$
(71)
$$\begin{aligned} {\mathbf{X}}_{1} = \left[ {\begin{array}{*{20}c} {{\mathbf{X}}_{1;1} } & {{\mathbf{X}}_{1;2} } & \cdots & {{\mathbf{X}}_{1;n} } \\ \end{array} } \right]^{\text{T}} = \left[\kern-0.15em\left[ {X_{1} } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \left( {1_{{n_{3} *1}} { \circledast }1_{{n_{2} *1}} { \circledast }{\mathbf{X}}_{1}^{{cheb}} } \right), \hfill \\ {\mathbf{X}}_{2} = \left[ {\begin{array}{*{20}c} {{\mathbf{X}}_{2;1} } & {{\mathbf{X}}_{2;2} } & \cdots & {{\mathbf{X}}_{2;n} } \\ \end{array} } \right]^{\text{T}} = \left[\kern-0.15em\left[ {X_{2} } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \left( {1_{{n_{3} *1}} { \circledast }{\mathbf{X}}_{2}^{{cheb}} { \circledast }1_{{n_{1} *1}} } \right), \hfill \\ {\mathbf{X}}_{3} = \left[ {\begin{array}{*{20}c} {{\mathbf{X}}_{3;1} } & {{\mathbf{X}}_{3;2} } & \cdots & {{\mathbf{X}}_{3;n} } \\ \end{array} } \right]^{\text{T}} = \left[\kern-0.15em\left[ {X_{3} } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \left( {{\mathbf{X}}_{3}^{{cheb}} { \circledast }1_{{n_{2} *1}} { \circledast }1_{{n_{1} *1}} } \right)\varvec{ }\varvec{.} \hfill \\ \end{aligned}$$
(72)

The discretized form of an arbitrary scalar field \(f\) is defined as:

$$\begin{aligned} \mathbb{f} = \left[\kern-0.15em\left[ f \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \left[ {\begin{array}{*{20}c} {f_{1} } & {f_{2} } & \ldots & {f_{{n_{1} }} } & {f_{{n_{1} + 1}} } & \ldots & {f_{{n_{1} + n_{2} }} } \\& {f_{{n_{1} + n_{2} + 1}} } & \ldots & {f_{{n_{1} n_{2} }} } & \ldots & {f_{{n_{1} n_{2} n_{3} }} } \\ \end{array} } \right]^{\text{T}} , \end{aligned}$$
(73)

whose derivatives are calculated as follows based on the numerical differentiation of GDQ [20] :

$$\mathbb{f}_{{,{\mathbf{X}}_{1} }}^{\left( r \right)} = \left[\kern-0.15em\left[ {f_{{,X_{1} }}^{\left( r \right)} } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{1} }}^{\left( r \right)} \left[\kern-0.15em\left[ f \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{1} }}^{\left( r \right)} \mathbb{f}, \quad \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{1} }}^{\left( r \right)} = \left( {{\mathbf{I}}_{{n_{3} }} { \circledast }{\mathbf{I}}_{{n_{2} }} { \circledast }\mathop {\mathbf{\mathcal{D}}}\limits^{1d} \,_{{X_{1} }}^{\left( r \right)} } \right),$$
(74)
$$\mathbb{f}_{{,{\mathbf{X}}_{2} }}^{\left( r \right)} = \left[\kern-0.15em\left[ {f_{{,X_{2} }}^{\left( r \right)} } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{2} }}^{\left( r \right)} \left[\kern-0.15em\left[ f \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{2} }}^{\left( r \right)} \mathbb{f}, \quad \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{2} }}^{\left( r \right)} = \left( {{\mathbf{I}}_{{n_{3} }} { \circledast }\mathop {\mathbf{\mathcal{D}}}\limits^{1d} \,_{{X_{2} }}^{\left( r \right)} { \circledast }{\mathbf{I}}_{{n_{1} }} } \right),$$
(75)
$$\mathbb{f}_{{,{\mathbf{X}}_{3} }}^{\left( r \right)} = \left[\kern-0.15em\left[ {f_{{,X_{3} }}^{\left( r \right)} } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{3} }}^{\left( r \right)} \left[\kern-0.15em\left[ f \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{3} }}^{\left( r \right)} \mathbb{f}, \quad \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{3} }}^{\left( r \right)} = \left( {\mathop {\mathbf{\mathcal{D}}}\limits^{1d} \,_{{X_{3} }}^{\left( r \right)} { \circledast }{\mathbf{I}}_{{n_{2} }} { \circledast }{\mathbf{I}}_{{n_{1} }} } \right),$$
(76)
$$\mathbb{f}_{{,{\mathbb{X}}}}^{\left( r \right)} = \left[\kern-0.15em\left[ {f_{{,{\mathbf{X}}}}^{\left( r \right)} } \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{\mathbf{X}}}^{\left( r \right)} \left[\kern-0.15em\left[ f \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{\mathbf{X}}}^{\left( r \right)} \mathbb{f}, \quad \mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{\mathbf{X}}}^{\left( r \right)} = \left[ {\begin{array}{*{20}c} {\mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{1} }}^{\left( r \right)} } \\ {\mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{2} }}^{\left( r \right)} } \\ {\mathop {\mathbf{\mathcal{D}}}\limits^{3d} \,_{{X_{3} }}^{\left( r \right)} } \\ \end{array} } \right],$$
(77)

in which

$$\mathop {\mathbf{\mathcal{D}}}\limits^{1d} \,_{{X_{k} }}^{\left( r \right)} = \left[ {D_{k\,\,ij}^{\left( r \right)} } \right],\varvec{ }$$
$$\begin{aligned} & D_{k\,\,\,ij}^{\left( r \right)} = \left\{ {\begin{array}{*{20}l} {\frac{{P_{i} }}{{\left( {{\mathbf{X}}_{{{\mathbf{K}};i}} - {\mathbf{X}}_{{{\mathbf{K}};j}} } \right)P_{j} }}} \hfill & {i \ne j \; {\text{and}} \; r = 1} \hfill \\ {r\left( {D_{k\,\,ij}^{\left( 1 \right)} D_{k\,\,ii}^{{\left( {r - 1} \right)}} - \frac{{D_{k\,\,\,ij}^{{\left( {r - 1} \right)}} }}{{\left( {{\mathbf{X}}_{{{\mathbf{K}};i}} - {\mathbf{X}}_{{{\mathbf{K}};j}} } \right)}}} \right)} \hfill & {i \ne j \; {\text{and }} \; r = 2,3, \ldots ,n_{k} - 1} \hfill \\ { - \mathop \sum \limits_{j = 1; j \ne i}^{{n_{k} }} D_{k\,\,ij}^{\left( r \right)} } \hfill & {i = j \; {\text{and }} \; r = 1,2,3, \ldots ,n_{k} - 1} \hfill \\ \end{array} } \right. \\ & P_{i} = \mathop \prod \limits_{j = 1; j \ne i}^{{n_{k} }} \left( {{\mathbf{X}}_{{{\mathbf{K}};i}} - {\mathbf{X}}_{{{\mathbf{K}};j}} } \right). \\ \end{aligned}$$
(78)

Also, the numerical integration in the VDQ method is performed based on the Taylor series as follows [20]:

$$\begin{aligned} \mathop \int \limits_{{{\mathfrak{C}}_{0} }} f {\text{d}}X_{1} {\text{d}}X_{2} {\text{d}}X_{3} = \mathop {\mathbf{\mathcal{S}}}\limits^{3d}_{{X_{1} X_{2} X_{3} ;{\mathfrak{C}}_{0} }} \left[\kern-0.15em\left[ f \right]\kern-0.15em\right]_{{{\mathfrak{C}}_{0} }} = \mathop {\mathbf{\mathcal{S}}}\limits^{3d}_{{X_{1} X_{2} X_{3} ;{\mathfrak{C}}_{0} }} \mathbb{f}, \hfill \\ \mathop {\mathbf{\mathcal{S}}}\limits^{3d}_{{X_{1} X_{2} X_{3} ;{\mathfrak{C}}_{0} }} = \left( {\mathop {\mathbf{\mathcal{S}}}\limits^{1d}_{{X_{3} }} { \circledast }\mathop {\mathbf{\mathcal{S}}}\limits^{1d}_{{X_{2} }} { \circledast }\mathop {\mathbf{\mathcal{S}}}\limits^{1d}_{{X_{1} }} } \right), \hfill \\ \end{aligned}$$
(79)

where \(\mathop {\mathbf{\mathcal{S}}}\limits^{1d}_{{X_{1} }}\), \(\mathop {\mathbf{\mathcal{S}}}\limits^{1d}_{{X_{2} }}\), and \(\mathop {\mathbf{\mathcal{S}}}\limits^{1d}_{{X_{3} }}\) are calculated as:

$$\begin{aligned} & \mathop {\mathbf{\mathcal{S}}}\limits^{1d}_{{X_{K} }} = \mathop \sum \limits_{r = 0}^{\infty } {\mathbf{M}}^{\left( r \right)} \mathop {\mathbf{\mathcal{D}}}\limits^{1d} \,_{{X_{K} }}^{\left( r \right)} , \\ & {\mathbf{M}}^{\left( r \right)} = \left[ {\begin{array}{*{20}c} {\frac{{\left( {{\mathbf{X}}_{{{\mathbf{K}};2}} - {\mathbf{X}}_{{{\mathbf{K}};1}} } \right)^{r + 1} }}{{2^{r + 1} \left( {r + 1} \right)!}}} & \ldots & {\frac{{\left( {{\mathbf{X}}_{{{\mathbf{K}};i + 1}} - {\mathbf{X}}_{{{\mathbf{K}};i}} } \right)^{r + 1} - \left( {{\mathbf{X}}_{{{\mathbf{K}};i - 1}} - {\mathbf{X}}_{{{\mathbf{K}};i}} } \right)^{r + 1} }}{{2^{r + 1} \left( {r + 1} \right)!}}} & \ldots & {\frac{{\left( {{\mathbf{X}}_{{{\mathbf{K}};n_{k} - 1}} - {\mathbf{X}}_{{{\mathbf{K}};n_{k} }} } \right)^{r + 1} }}{{2^{r + 1} \left( {r + 1} \right)!}}} \\ \end{array} } \right]. \\ \end{aligned}$$
(80)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Hassani, R., Faraji Oskouie, M. et al. Large deformation analysis in the context of 3D compressible nonlinear elasticity using the VDQ method. Engineering with Computers 37, 3251–3263 (2021). https://doi.org/10.1007/s00366-020-00959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-00959-3

Keywords

Navigation