Skip to main content
Log in

HMOSHSSA: a hybrid meta-heuristic approach for solving constrained optimization problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper proposes a novel hybrid multi-objective optimization algorithm named HMOSHSSA by synthesizing the strengths of Multi-objective Spotted Hyena Optimizer (MOSHO) and Salp Swarm Algorithm (SSA). HMOSHSSA utilizes the exploration capability of MOSHO to explore the search space effectively and leader and follower selection mechanism of SSA to achieve global best solution with faster convergence. The proposed algorithm is evaluated on 24 benchmark test functions, and its performance is compared with seven well-known multi-objective optimization algorithms. The experimental results demonstrate that HMOSHSSA acquires very competitive results and outperforms other algorithms in terms of convergence speed, search-ability and accuracy. Additionally, HMOSHSSA is also applied on seven well-known engineering problems to further verify its efficacy. The results reveal the effectiveness of proposed algorithm toward solving real-life multi-objective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bandaru S, Deb K (2016) Metaheuristic techniques. In: Sengupta RN, Gupta A, Dutta J (eds) Decision sciences: theory and practice. Taylor & Francis Group, CRC Press, pp 693–750

  2. Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl-Based Syst 150:175–197

    Google Scholar 

  3. Dhiman G, Guo S, Kaur S (2018) ED-SHO: a framework for solving nonlinear economic load power dispatch problem using spotted hyena optimizer. Mod Phys Lett A 33(40):1850239

    Google Scholar 

  4. Kaur A, Kaur S, Dhiman G (2018) A quantum method for dynamic nonlinear programming technique using Schrödinger equation and monte carlo approach. Mod Phys Lett B 32(30):1850374

    Google Scholar 

  5. Chiandussi G, Codegone M, Ferrero S, Varesio FE (2012) Comparison of multi-objective optimization methodologies for engineering applications. Comput Math Appl 63(5):912–942

    MathSciNet  MATH  Google Scholar 

  6. Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In: International conference on parallel problem solving from nature. Springer, pp 722–731

  7. Coello CAC, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer, Berlin

    MATH  Google Scholar 

  8. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395

    MathSciNet  MATH  Google Scholar 

  9. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007

    Google Scholar 

  10. Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on evolutionary computation, CEC’02, pp 1051–1056

  11. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  12. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Google Scholar 

  13. Corne,DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kaufmann Publishers Inc., pp 283–290

  14. Zitzler E, Laumanns M, Thiele L (2001) SPEA 2: improving the strength Pareto evolutionary algorithm. TIK-report 103

  15. Angus D, Woodward C (2009) Multiple objective ant colony optimisation. Swarm Intell 3(1):69–85

    Google Scholar 

  16. Mansoor U, Kessentini M, Maxim BR, Deb K (2017) Multi-objective code-smells detection using good and bad design examples. Softw Qual J 25(2):529–552

    Google Scholar 

  17. Chen M, Hammami O (2015) A system engineering conception of multi-objective optimization for multi-physics system. In: Multiphysics modelling and simulation for systems design and monitoring. Springer, pp 299–306

  18. Luh G-C, Chueh C-H (2004) Multi-objective optimal design of truss structure with immune algorithm. Comput Struct 82(11–12):829–844

    MathSciNet  Google Scholar 

  19. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  20. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Google Scholar 

  21. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  22. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2009) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264

  23. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. Springer, London, pp 105–145

    MATH  Google Scholar 

  24. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Google Scholar 

  25. Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, pp 403–449

  26. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Google Scholar 

  27. Edgeworth FY (1881) Mathematical physics: P. Keagan, London

    Google Scholar 

  28. Pareto V (1964) Cours d’economie politique: Librairie Droz

  29. Coello CAC (2009) Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front Comput Sci China 3(1):18–30

    Google Scholar 

  30. Zhou A, Bo-Yang Q, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut Comput 1(1):32–49

    Google Scholar 

  31. Mirjalili S, Saremi S, Mirjalili SM, Coelho LS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Google Scholar 

  32. Zitzler E, Thiele L (1998) An evolutionary algorithm for multiobjective optimization: the strength pareto approach. TIK-report 43

  33. Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature. Springer, pp 839–848

  34. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Google Scholar 

  35. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. MHS’95. IEEE, pp 39–43

  36. Hancer E, Xue B, Zhang M, Karaboga D, Akay B (2015) A multi-objective artificial bee colony approach to feature selection using fuzzy mutual information. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp 2420–2427

  37. Shang R, Liu H, Jiao L (2017) Multi-objective clustering technique based on k-nodes update policy and similarity matrix for mining communities in social networks. Physica A 486(Supplement C):1–24

    Google Scholar 

  38. Pradhan PM, Panda G (2012) Solving multiobjective problems using cat swarm optimization. Expert Syst Appl 39(3):2956–2964

    Google Scholar 

  39. Zhong W, Liu J, Xue M, Jiao L (2004) A multiagent genetic algorithm for global numerical optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 34(2):1128–1141

    Google Scholar 

  40. Yang X-S, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    MathSciNet  Google Scholar 

  41. Yang S, Wang M, Jiao L (2004) A quantum particle swarm optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol 1, pp 320–324

  42. Mejia JAH, Schütze O, Cuate O, Lara A, Deb K (2017) RDS-NSGA-II: a memetic algorithm for reference point based multi-objective optimization. Eng Optim 49(5):828–845

    MathSciNet  Google Scholar 

  43. Jiao L, Member S, Wang L (2000) A novel genetic algorithm based on immunity. IEEE Trans Syst Man Cybern Part A Syst Hum 30:552–561

    Google Scholar 

  44. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Google Scholar 

  45. Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172

    Google Scholar 

  46. Zhang Z, Ding S, Jia W (2019) A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng Appl Artif Intell 85:254–268

    Google Scholar 

  47. Sree Ranjini KS, Murugan S (2017) Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst Appl 83:63–78

    Google Scholar 

  48. Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: a new hybrid pso based on sine cosine algorithm and Levy flight for solving optimization problems. Appl Soft Comput 73:697–726

    Google Scholar 

  49. Katunin An, Przystalka P (2014) Meta-optimization method for wavelet-based damage identification in composite structures. In: 2014 federated conference on computer science and information systems. IEEE, pp 429–438

  50. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Google Scholar 

  51. Coello CAC, Dhaenens C, Jourdan L (2010) Multi-objective combinatorial optimization: problematic and context. Springer, Berlin, pp 1–21

    MATH  Google Scholar 

  52. Schutze O, Esquivel X, Lara A, Coello CAC (2012) Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans Evol Comput 16(4):504–522

    Google Scholar 

  53. Rudolph G, Schütze O, Grimme C, Domínguez-Medina C, Trautmann H (2016) Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results. Comput Optim Appl 64(2):589–618

    MathSciNet  MATH  Google Scholar 

  54. Li M, Zheng J (2009) Spread assessment for evolutionary multi-objective optimization. Springer, Berlin, pp 216–230

    Google Scholar 

  55. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. Trans Evolut Comput 7(2):117–132

    Google Scholar 

  56. Knowles JD, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK-Report 214

  57. Kaur S, Singh P (2019) How does object-oriented code refactoring influence software quality? Research landscape and challenges. J Syst Softw 157:110394

    Google Scholar 

  58. Mkaouer MW, Kessentini M, Cinnéide MÓ, Hayashi S, Deb K (2017) A robust multi-objective approach to balance severity and importance of refactoring opportunities. Empir Softw Eng 22(2):894–927

    Google Scholar 

  59. Fokaefs M, Tsantalis N, Chatzigeorgiou A (2007) Jdeodorant: Identification and removal of feature envy bad smells. In: 2007 IEEE international conference on software maintenance. IEEE, pp 519–520

  60. Ouni A, Kessentini M, Sahraoui H, Hamdi MS (2011) Design defects detection and correction by example. In: 2011 IEEE international conference on program comprehension (ICPC). IEEE, pp 81–90

  61. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Google Scholar 

  62. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Google Scholar 

  63. Siddall JN (1972) Analytical decision-making in engineering design. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satnam Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Unconstrained multi-objective test problems

Name

Mathematical formulation

Properties

UF1

\(f_1=x_1+\dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}[x_j-sin\Big (6\pi x_1+\dfrac{j\pi }{n}\Big )]^2\)

Bi-objective

\(f_2=1-\sqrt{x}+\dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}[x_j-sin\Big (6\pi x_1+\dfrac{j\pi }{n}\Big )]^2\)

\(J_1=\{j\, \mid \, j \,\, is\,\, odd\,\, and\,\, 2 \le j \le n\} , J_2=\{j\, \mid \, j \,\, is\,\, even\,\, and\,\, 2 \le j \le n\}\)

UF2

\(f_1=x_1+\dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}y_j^2\)

Bi-objective

\(f_2=1-\sqrt{x}+\dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}y_j^2\)

\(J_1=\{j\, \mid \, j \,\, is\,\, odd\,\, and\,\, 2 \le j \le n\} , J_2=\{j\, \mid \, j \,\, is\,\, even\,\, and\,\, 2 \le j \le n\}\)

 

\(y_j= {\left\{ \begin{array}{ll} x_j-[0.3x_1^2cos\Big (24\pi x_1+\dfrac{4j\pi }{n}\Big )+0.6x_1]cos\Big (6\pi x_1 + \dfrac{j\pi }{n}\Big ),&{} if \,\, j \epsilon J_1\\ x_j-[0.3x_1^2cos\Big (24\pi x_1+\dfrac{4j\pi }{n}\Big )+0.6x_1]sin\Big (6\pi x_1 + \dfrac{j\pi }{n}\Big ),&{} if \,\, j \epsilon J_2 \end{array}\right. }\)

 

UF3

\(f_1=x_1+\dfrac{2}{\mid J_1 \mid }\Big (4\sum _{j\epsilon J_1}y_j^2 - 2 \prod _{j \epsilon J_1}cos\Big (\dfrac{20y_j\pi }{\sqrt{j}} \Big )+2\Big )\)

Bi-objective

\(f_2=\sqrt{x_1}+\dfrac{2}{\mid J_2 \mid }\Big (4\sum _{j\epsilon J_1}y_j^2 - 2 \prod _{j \epsilon J_2}cos\Big (\dfrac{20y_j\pi }{\sqrt{j}} \Big )+2\Big )\)

\(J_1=\{j\, \mid \, j \,\, is\,\, odd\,\, and\,\, 2 \le j \le n\} , J_2=\{j\, \mid \, j \,\, is\,\, even\,\, and\,\, 2 \le j \le n\}\)

\(y_j=x_j-x_1^{0.5(1.0+ \tfrac{3(j-2)}{n-2})} , j=2, 3, \ldots , n\)

UF4

\(f_1=x_1+\dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}h(y_j)\)

Bi-objective

\(f_2=1-x_2+\dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}h(y_j)\)

\(J_1=\{j\, \mid \, j \,\, is\,\, odd\,\, and\,\, 2 \le j \le n\} , J_2=\{j\, \mid \, j \,\, is\,\, even\,\, and\,\, 2 \le j \le n\}\)

\(y_j=x_j-sin\Big (6\pi x_1 + \dfrac{j\pi }{n}\Big ) , j=2, 3, \ldots , n, \quad h(t)=\dfrac{\mid t \mid }{1+e^{2\mid t \mid }}\)

\(f_1=x_1+\Big (\dfrac{1}{2N}+\epsilon \Big )\mid sin(2N\pi x_1)\mid +\dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}h(y_i)\)

UF5

\(f_2=1-x_1+\Big (\dfrac{1}{2N}+\epsilon \Big ) \mid sin(2N\pi x_1) \mid + \dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}h(y_i)\)

Bi-objective

\(J_1=\{j\, \mid \, j \,\, is\,\, odd\,\, and\,\, 2 \le j \le n\} , J_2=\{j\, \mid \, j \,\, is\,\, even\,\, and\,\, 2 \le j \le n\}\)

\(\epsilon > 0, \quad y_j=x_j-sin\Big (6\pi x_1 + \dfrac{j\pi }{n}\Big ) , j=2, 3, \ldots , n, \quad h(t)=2t^2-cos(4\pi t)+1\)

UF6

\(f_1=x_1+max\{0,2\Big (\dfrac{1}{2N}+\epsilon \Big )sin(2N\pi x_1)\}+\dfrac{2}{\mid J_1 \mid }\Big (4\sum _{j\epsilon J_1}y_j^2-2 \prod _{j\epsilon J_1} cos \Big (\dfrac{20y_j\pi }{\sqrt{j}} \Big )+1)\)

Bi-objective

\(f_2=1-x_1+max\{0,2\Big (\dfrac{1}{2N}+\epsilon \Big )sin(2N\pi x_1)\}+\dfrac{2}{\mid J_2 \mid }\Big (4\sum _{j\epsilon J_2}y_j^2-2 \prod _{j\epsilon J_2} cos \Big (\dfrac{20y_j\pi }{\sqrt{j}} \Big )+1)\)

\(J_1=\{j\, \mid \, j \,\, is\,\, odd\,\, and\,\, 2 \le j \le n\} , J_2=\{j\, \mid \, j \,\, is\,\, even\,\, and\,\, 2 \le j \le n\}\)

\(\epsilon > 0, \quad y_j=x_j-sin\Big (6\pi x_1 + \dfrac{j\pi }{n}\Big ) , j=2, 3, \ldots , n\)

UF7

\(f_1= \root 5 \of {x_1} + \dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}y_j^2\)

Bi-objective

\(f_2=1-\root 5 \of {x_1} + \dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}y_j^2\)

\(J_1=\{j\, \mid \, j \,\, is\,\, odd\,\, and\,\, 2 \le j \le n\} , J_2=\{j\, \mid \, j \,\, is\,\, even\,\, and\,\, 2 \le j \le n\}\)

\(\epsilon > 0, \quad y_j=x_j-sin\Big (6\pi x_1 + \dfrac{j\pi }{n}\Big ) , j=2, 3, \ldots , n\)

UF8

\(f_1=cos(0.5x_1\pi )cos(0.5x_2\pi )+\dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}\Big (x_j-2x_2sin\Big (2\pi x_1+\dfrac{j\pi }{n}\Big )^2\Big )\)

Tri-objective

\(f_2=cos(0.5x_1\pi )sin(0.5x_2\pi )+\dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}\Big (x_j-2x_2sin\Big (2\pi x_1+\dfrac{j\pi }{n}\Big )^2\Big )\)

\(f_3=sin(0.5x_1\pi )+\dfrac{2}{\mid J_3 \mid }\sum _{j\epsilon J_3}\Big (x_j-2x_2sin\Big (2\pi x_1+\dfrac{j\pi }{n}\Big )^2\Big )\)

\(J_1=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j-1\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

\(J_2=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j-2\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

\(J_3=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

UF9

\(f_1=0.5[max\{0,(1+\epsilon )(1-4(2x_1-1)^2)\}+2x_1]x_2+\dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}\Big (x_j-2x_2sin\Big (2\pi x_1+\dfrac{j\pi }{n}\Big )^2\Big )\)

Tri-objective

\(f_2=0.5[max\{0,(1+\epsilon )(1-4(2x_1-1)^2)\}+2x_1]x_2+\dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}\Big (x_j-2x_2sin\Big (2\pi x_1+\dfrac{j\pi }{n}\Big )^2\Big )\)

\(f_3=1-x_2+\dfrac{2}{\mid J_3 \mid }\sum _{j\epsilon J_3}\Big (x_j-2x_2sin\Big (2\pi x_1+\dfrac{j\pi }{n}\Big )^2\Big )\)

\(J_1=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j-1\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

\(J_2=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j-2\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

\(J_3=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\},\quad \epsilon =0.1\)

UF10

\(f_1=cos(0.5x_1\pi )cos(0.5x_2\pi )+\dfrac{2}{\mid J_1 \mid }\sum _{j\epsilon J_1}[4y_j^2-cos(8\pi y_j)+1]\)

Tri-objective

\(f_2=cos(0.5x_1\pi )sin(0.5x_2\pi )+\dfrac{2}{\mid J_2 \mid }\sum _{j\epsilon J_2}[4y_j^2-cos(8\pi y_j)+1]\)

\(f_3=sin(0.5x_1\pi )+\dfrac{2}{\mid J_3 \mid }\sum _{j\epsilon J_3}[4y_j^2-cos(8\pi y_j)+1]\)

\(J_1=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j-1\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

\(J_2=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j-2\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

\(J_3=\{j\, \mid \, 3 \le j \le n, \,\, and \,\, j\,\, is\,\, a \,\, multiplication \,\, of \,\, 3\}\)

Appendix 2: Unconstrained multi-objective test problems

ZDT1: Convex

$$\begin{aligned}&Minimize:\quad f_1(x)=x_1\\&Minimize:\quad f_2(x)=g(x)\times h(f_1(x),g(x))\\ \end{aligned}$$

where,

$$\begin{aligned}&g(x)=1+\dfrac{9}{N-1}\mathop \sum \limits _{i=2}^{N}x_i\\&h(f_1(x),g(x))=1-\sqrt{\dfrac{f_1(x)}{g(x)}}\\&0\le x_i\le 1,\, 1\le i \le 30 \end{aligned}$$

ZDT2: Concave

$$\begin{aligned}&Minimize:\quad f_1(x)=x_1\\&Minimize:\quad f_2(x)=g(x)\times h(f_1(x),g(x))\\ \end{aligned}$$

where,

$$\begin{aligned}&g(x)=1+\dfrac{9}{N-1}\mathop \sum \limits _{i=2}^{N}x_i\\&h(f_1(x),g(x))=1-\Bigg (\dfrac{f_1(x)}{g(x)}\Bigg )^2\\&0\le x_i\le 1,\, 1\le i \le 30\\ \end{aligned}$$

ZDT3: Disconnected

$$\begin{aligned}&Minimize:\quad f_1(x)=x_1\\&Minimize:\quad f_2(x)=g(x)\times h(f_1(x),g(x))\\ \end{aligned}$$

where,

$$\begin{aligned}&g(x)=1+\dfrac{9}{29}\mathop \sum \limits _{i=2}^{N}x_i\\&h(f_1(x),g(x))=1-\sqrt{\dfrac{f_1(x)}{g(x)}}\\&\quad -\Bigg (\dfrac{f_1(x)}{g(x)}\Bigg )sin(10 \pi f_1(x))\\&0\le x_i\le 1,\, 1\le i \le 30\\ \end{aligned}$$

ZDT4: Convex

$$\begin{aligned}&Minimize: f_1(x)=x_1\\&Minimize: f_2(x)=g(x)\times [1-(x_1/g(x))^2]\\ \end{aligned}$$

where,

$$\begin{aligned}&g(x)=1+10(n-1)+\mathop \sum \limits _{i=2}^{n}(x_i^2-10cos(4\pi x_i))\\&0\le x_1\le 1,\, -5\le x_i \le 5,\, i=1,2,\ldots ,n\\ \end{aligned}$$

ZDT6: Concave

$$\begin{aligned}&Minimize:\quad f_1(x)=1-e^{-4x_1}\times sin^6(6\pi x_1)\\&Minimize:\quad f_2(x)=1-\Big (\dfrac{f_1(x)}{g(x)} \Big )^2\\ \end{aligned}$$

where,

$$\begin{aligned}&g(x)=1+9\Bigg [\dfrac{\Big (\sum _{i=2}^{n}x_i \Big )}{(n-1)} \Bigg ]^{0.25}\\&0\le x_i\le 1,\, i=1,2,\ldots ,n \end{aligned}$$

Appendix 3: Unconstrained multi-objective test problems

DTLZ1: Linear

$$\begin{aligned}&Minimize:\quad f_1(\vec {x})=\dfrac{1}{2}x_1(1+g(\vec {x}))\\&Minimize:\quad f_2(\vec {x})=\dfrac{1}{2}(1-x_1)(1+g(\vec {x}))\\ \end{aligned}$$

where,

$$\begin{aligned}&g(\vec {x})=100\Big [\mid \vec {x} \mid +\mathop \sum \limits _{x_i\epsilon \vec {x}}(x_1-0.5)^2-cos(20\pi (x_i-0.5))\Big ]\\&0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{aligned}$$

DTLZ2: Concave

$$\begin{aligned}&Minimize:\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (x_1\dfrac{\pi }{2}\Big )\\&Minimize:\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (x_1\dfrac{\pi }{2}\Big )\\ \end{aligned}$$

where,

$$\begin{aligned}&g(\vec {x})=\mathop \sum \limits _{x_i\epsilon \vec {x}}(x_i-0.5)^2\\&0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{aligned}$$

DTLZ3: Concave

$$\begin{aligned} Minimize:\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (x_1\dfrac{\pi }{2}\Big )\\ Minimize:\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (x_1\dfrac{\pi }{2}\Big )\\ \end{aligned}$$

where,

$$\begin{aligned}&g(\vec {x})=100\Big [\mid \vec {x} \mid + \mathop \sum \limits _{x_i\epsilon \vec {x}}(x_i-0.5)^2-cos(20\pi (x_i-0.5))\Big ]\\&0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{aligned}$$

DTLZ4: Concave

$$\begin{aligned}&Minimize:\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (x_1^\alpha \dfrac{\pi }{2}\Big )\\&Minimize:\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (x_1^\alpha \dfrac{\pi }{2}\Big )\\ \end{aligned}$$

where,

$$\begin{aligned}&g(\vec {x})=\mathop \sum \limits _{x_i\epsilon \vec {x}}(x_i-0.5)^2\\&\alpha =100\\&0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{aligned}$$

DTLZ5:

$$\begin{aligned}&Minimize:\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\&Minimize:\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\ \end{aligned}$$

where,

$$\begin{aligned}&g(\vec {x})=\mathop \sum \limits _{x_i\epsilon \vec {x}}(x_i-0.5)^2\\&0\le x_i\le 1,\, i=2, 3, \ldots , n\\ \end{aligned}$$

DTLZ6:

$$\begin{aligned}&Minimize:\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\&Minimize:\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\ \end{aligned}$$

where,

$$\begin{aligned}&g(\vec {x})=\mathop \sum \limits _{x_i\epsilon \vec {x}}x_i^{0.1}\\&0\le x_i\le 1,\, i=2, 3, \ldots , n\\ \end{aligned}$$

DTLZ7: Disconnected

$$\begin{aligned}&Minimize:\quad f_1(\vec {x})=x_1\\&Minimize:\quad f_2(\vec {x})=(1+g(\vec {x}))h(f_1(\vec {x}),g(\vec {x}))\\ \end{aligned}$$

where,

$$\begin{aligned}&g(\vec {x})=1+\dfrac{9}{\mid \vec {x} \mid }\mathop \sum \limits _{x_i\epsilon \vec {x}}x_i\\&h(f_1(\vec {x}),g(\vec {x}))=M-\dfrac{f_1(\vec {x})}{1+g(\vec {x})}(1+sin(3\pi f_1(\vec {x})))\\&0\le x_i\le 1,\, 1\le i \le n \end{aligned}$$

Appendix 4: Constrained engineering design problems

1.1 Welded beam design problem

$$\begin{aligned}&\begin{aligned}&{\text{Minimize}}\,\, f_1(\vec {K}) = C = 1.10471h^2l + 0.04811tb(14.0 + l),\\&{\text{Minimize}}\,\, f_2(\vec {K}) = \delta {(K)} = \dfrac{2.1952}{t^3b},\\&{\text{Subject}}\;{\text{to}}\\&g_1(\vec {K}) = 13,600 - \tau {(\vec {K})} \ge 0,\\&g_2(\vec {K}) = 30,000 - \sigma {(\vec {K})} \ge 0,\\&g_3(\vec {K}) = b - h \ge 0,\\&g_4(\vec {K}) = P_c(\vec {K}) - 6,000 \ge 0,\\ \end{aligned} \\&\begin{aligned} {\text{Variable}}\;{\text{ range}} \\&0.125 \le h, b \le 5.0 {\text{in.}},\\&0.1 \le l, t \le 10.0 {\text{in.}},\\ \end{aligned} \\&\begin{aligned}&{\text{where}}\;{\text{ stress}}\;{\text{ and}}\;{\text{ buckling}}\;{\text{ terms}}\;{\text{ are:}}\\&\tau {(\vec {K})} = \sqrt{(\tau ^{'})^2 + (\tau ^{''})^2 + (l\tau ^{'}\tau ^{''})/\sqrt{0.25(l^2 + (h + t)^2)}},\\&\tau ^{'} = \dfrac{6,000}{\sqrt{2}hl}, \sigma {(\vec {K})} = \dfrac{504,000}{t^2b},\\&\tau ^{''} = \dfrac{6,000(14 + 0.5l)\sqrt{0.25(l^2 + (h + t)^2)}}{2[0.707hl(l^2/12 + 0.25(h + t)^2)]},\\&P_c(\vec {K}) = 64,746.022(1 - 0.0282346t)tb^3. \end{aligned} \end{aligned}$$

1.2 Multiple-disk clutch brake design problem

$$\begin{aligned} \begin{aligned}&{\text{Minimize}}\,\, f_1(\vec {K}) = T = \dfrac{I_zw}{M_h+M_f},\\&{\text{Minimize}}\,\, f_2(\vec {K}) = M = \pi (r_o^2 - r_i^2)t(S+1)p_m,\\&{\text{Subject}}\;{\text{ to}} \\&g_1(\vec {K}) = r_o - r_i - \Delta R \ge 0,\\&g_2(\vec {K}) = L_{max} - (S+1)(t+\delta ) \ge 0,\\&g_3(\vec {K}) = p_{max} - p_{rk} \ge 0,\\&g_4(\vec {K}) = p_{max}V_{sr,max} - p_{rk}V_{sr} \ge 0,\\&g_5(\vec {K}) = V_{sr,max} - V_{sr} \ge 0,\\&g_6(\vec {K}) = M_h - sM_s \ge 0,\\&g_7(\vec {K}) = T \ge 0,\\&g_8(\vec {K}) = T_{max} - T \ge 0,\\&60 \le r_i \le 80\;{\text{ mm}},\\&90 \le r_o \le 110\;{\text{ mm}},\\&1.5 \le t \le 3\;{\text{ mm}},\\&0 \le F \le 1000\;{\text{ N}},\\&2 \le S\le 9\\&{\text{where}}\\&p_m = 0.0000078\; {\text{ kg/mm}}^3, p_{max} = 1\; {\text{ MPa}}, \mu = 0.5, V_{sr,max} = 10\; {\text{ m/s}},\\&s = 1.5, T_{max} = 15\;{\text{ s}}, n = 250\; {\text{ rpm}}, M_s = 40\; {\text{ Nm}}, M_f = 3 \;{\text{ Nm}},\\&I_k = 55\; {\text{ kg}}\;{\text{m}}^2, \delta = 0.5\; {\text{ mm}}, \Delta R = 20\; {\text{ mm}}, L_{max} = 30\; {\text{ mm}},\\&M_h = \dfrac{2}{3}\mu FS\dfrac{r_o^3 - r_i^3}{r_o^2 - r_i^2}\; {\text{ N}}\;{\text{mm}}, w = \dfrac{\pi n}{30}\; {\text{ rad/s}}, R_{sr} = \dfrac{2}{3}\dfrac{r_o^3 - r_i^3}{r_o^2 - r_i^2} \;{\text{ mm}}\\&A = \pi (r_o^2 - r_i^2)\; {\text{ mm}}^2, p_{rk} = \dfrac{F}{A}\; {\text{ N/mm}}^2, V_{sr} = \dfrac{\pi R_{sr}n}{30}\; {\text{ mm/s}}, \end{aligned} \end{aligned}$$

1.3 Pressure vessel design problem

$$\begin{aligned}&{\text{Minimize}}\,\, f_1(\vec {K}) = -(\pi R^2L + 1.333\pi R^3),\\&{\text{Minimize}}\,\, f_2(\vec {K}) = 0.6224T_sLR + 1.7781T_hR^2 \\&\quad + 3.1661T_s^2L + 19.84T_s^2R,\\&{\text{Subject}}\;{\text{ to}}\\&g_1(\vec {K}) = 0.0193R - T_s \le 0,\\&g_2(\vec {K}) = 0.00954R - T_h \le 0,\\&g_3(\vec {K}) = 0.0625 - T_s \le 0,\\&g_4(\vec {K}) = T_s - 5 \le 0,\\&g_5(\vec {K}) = 0.0625 - T_h \le 0,\\&g_6(\vec {K}) = T_h - 5 \le 0,\\&g_7(\vec {K}) = 10 - R \le 0,\\&g_8(\vec {K}) = R - 200 \le 0,\\&g_9(\vec {K}) = 10 - L \le 0,\\&g_{10}(\vec {K}) = L - 240 \le 0,\\ \end{aligned}$$

1.4 Speed reducer design problem

$$\begin{aligned}&{\text{Minimize}}\,\, f_1(\vec {K}) = \dfrac{\sqrt{ \dfrac{745z_4}{z_2z_3}^2 + 1.69 \times 10^7}}{0.1z_6^3},\\&{\text{Minimize}},\, f_2(\vec {K}) = 0.7854z_1z_2^2(3.3333z_3^2 + 14.9334z_3 - 43.0934)\\ {}&- 1.508z_1(z_6^2 + z_7^2) + 7.4777(z_6^3 + z_7^3) + 0.7854(z_4z_6^2 + z_5z_7^2),\\&{\text{Subject}}\;{\text{ to}}\\&g_1(\vec {K}) = \dfrac{27}{z_1z_2^2z_3} - 1 \le 0,\\&g_2(\vec {K}) = \dfrac{397.5}{z_1z_2^2z_3^2} - 1 \le 0,\\&g_3(\vec {K}) = \dfrac{1.93z_4^3}{z_2z_6^4z_3} - 1 \le 0,\\&g_4(\vec {K}) = \dfrac{1.93z_5^3}{z_2z_7^4z_3} - 1 \le 0,\\&g_5(\vec {K}) = \dfrac{[(745(z_4/z_2z_3))^2 + 16.9 \times 10^6]^{1/2}}{110z_6^3} - 1 \le 0,\\&g_6(\vec {K}) = \dfrac{[(745(z_5/z_2z_3))^2 + 157.5 \times 10^6]^{1/2}}{85z_7^3} - 1 \le 0,\\&g_7(\vec {K}) = \dfrac{z_2z_3}{40} - 1 \le 0,\\&g_8(\vec {K}) = \dfrac{5z_2}{z_1} - 1 \le 0,\\&g_9(\vec {K}) = \dfrac{z_1}{12z_2} - 1 \le 0,\\&g_{10}(\vec {K}) = \dfrac{1.5z_6 + 1.9}{z_4} - 1 \le 0,\\&g_{11}(\vec {K}) = \dfrac{1.1z_7 + 1.9}{z_5} - 1 \le 0,\\&where\\&2.6 \le z_1 \le 3.6, \,\,0.7\le z_2 \le 0.8, \,\,17 \le z_3 \le 28,\,\,7.3 \le z_4 \le 8.3,\\&7.3 \le z_5 \le 8.3, \,\,2.9 \le z_6 \le 3.9, \,\,5.0 \le z_7 \le 5.5 \,\, \end{aligned}$$

1.5 Gear train design problem

$$\begin{aligned}&{\text{Minimize}}\,\, f_1(T) = \Big | 6.931 - \dfrac{T_a}{T_d} \dfrac{T_f}{T_b}\Big |\\&{\text{Minimize}}\,\, f_2(T) = max \Big (T_d, T_b, T_a, T_f\Big )\\&{\text{Subject}}\;{\text{to}}\\&\dfrac{f_1(T)}{6.931} \le 0.5,\\&12 \le T_d, T_b, T_a, T_f \le 60,\\&T_d, T_b, T_a, T_f {\text{ are}}\;{\text{ integers}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Awasthi, L.K. & Sangal, A.L. HMOSHSSA: a hybrid meta-heuristic approach for solving constrained optimization problems. Engineering with Computers 37, 3167–3203 (2021). https://doi.org/10.1007/s00366-020-00989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-00989-x

Keywords

Navigation