Skip to main content
Log in

A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A novel multi-scale finite element formulation for contact mechanics between nominally smooth but microscopically rough surfaces is herein proposed. The approach integrates the interface finite element method (FEM) for modelling interface interactions at the macro-scale with a boundary element method (BEM) for the solution of the contact problem at the micro-scale. The BEM is used at each integration point to determine the normal contact traction and the normal contact stiffness, allowing to take into account any desirable kind of rough topology, either real, e.g. obtained from profilometric data, or artificial, evaluated with the most suitable numerical or analytical approach. Different numerical strategies to accelerate coupling between FEM and BEM are discussed in relation to a selected benchmark test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. See https://uk.mathworks.com/help/stats/fitnlm.html for documentation.

References

  1. Luan B, Robbins M (2005) The breakdown of continuum models for mechanical contacts. Nature 435:929–932

    Article  Google Scholar 

  2. Raja J, Muralikrishnan B, Fu S (2002) Recent advances in separation of roughness, waviness and form. Precis Eng 26:222–235

    Article  Google Scholar 

  3. Vakis A, Yastrebov V, Scheibert J, Nicola L, Dini D, Minfray C, Almqvist A, Paggi M, Lee S, Limbert G, Molinari J, Anciaux G, Echeverri Restrepo S, Papangelo A, Cammarata A, Nicolini P, Aghababaei R, Putignano C, Stupkiewicz S, Lengiewicz J, Costagliola G, Bosia F, Guarino R, Pugno N, Carbone G, Mueser M, Ciavarella M (2018) Modeling and simulation in tribology across scales: an overview. Tribol Int 125:169–199. https://doi.org/10.1016/j.riboint.2018.02.005

    Article  Google Scholar 

  4. Rabinowicz E (1965) Friction and wear of materials. Wiley, New York

    Google Scholar 

  5. Johnson K (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Goryacheva I (1998) Contact mechanics in tribology, vol 61. Springer, Netherlands

    Book  Google Scholar 

  7. Persson B (2000) Sliding friction, physical principles and applications. Springer, Berlin

    Book  Google Scholar 

  8. Popov V (2010) Contact mechanics and friction. Springer, Berlin

    Book  Google Scholar 

  9. Popov V, Hess M (2015) Method of dimensionality reduction in contact mechanics and friction. Springer, Berlin

    Book  Google Scholar 

  10. Barber J (2018) Contact mechanics. Springer International Publishing, Berlin

    Book  Google Scholar 

  11. McCool J (1986) Comparison of models for the contact of rough surfaces. Wear 107:37–60

    Article  Google Scholar 

  12. Zavarise G, Borri-Brunetto M, Paggi M (2004) On the reliability of microscopical contact models. Wear 257:229–245

    Article  Google Scholar 

  13. Greenwood J, Williamson J (1966) Contact of nominally flat surfaces. Proc R Soc Lond A Math Phys Eng Sci 295:300–319. https://doi.org/10.1098/rspa.1966.0242

    Article  Google Scholar 

  14. Ciavarella M, Delfine V, Demelio G (2006) A “re-vitalized” greenwood and williamson model of elastic contact between fractal surfaces. J Mech Phys Solids 54:2569–2591. https://doi.org/10.1016/j.jmps.2006.05.006

    Article  MATH  Google Scholar 

  15. Greenwood J (2006) A simplified elliptic model of rough surface contact. Wear 261:191–200

    Article  Google Scholar 

  16. Ciavarella M, Greenwood J, Paggi M (2008) Inclusion of “interaction” in the greenwood and williamson contact theory. Wear 265:729–734. https://doi.org/10.1016/j.wear.2008.01.019

    Article  Google Scholar 

  17. Majumdar A, Bhushan B (1990) Role of fractal geometry in roughness characterization and contact mechanics of surfaces. ASME J Tribol 112:205–216

    Article  Google Scholar 

  18. Borri-Brunetto M, Carpinteri A, Chiaia B (1999) Scaling phenomena due to fractal contact in concrete and rock fractures. Int J Fract 95:221–238. https://doi.org/10.1023/A:1018656403170

    Article  Google Scholar 

  19. Persson B, Albohr O, Tartaglino U, Volokitin A, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17:R1

    Article  Google Scholar 

  20. Andersson T (1981) The boundary element method applied to two-dimensional contact problems with friction. In: Boundary element methods, Vol 3, pp 239–258

  21. Man K (1994) Contact mechanics using boundary elements, topics in engineering, vol 22. Southampton, Boston

    Google Scholar 

  22. Wriggers P, Reinelt J (2009) Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Comput Methods Appl Mech Eng 198:1996–2008. https://doi.org/10.1016/j.cma.2008.12.021

    Article  MathSciNet  MATH  Google Scholar 

  23. Leroux J, Fulleringer B, Nélias D (2010) Contact analysis in presence of spherical inhomogeneities within a half-space. Int J Solids Struct 47:3034–3049. https://doi.org/10.1016/j.ijsolstr.2010.07.006

    Article  MATH  Google Scholar 

  24. Putignano C, Carbone G, Dini D (2015) Mechanics of rough contacts in elastic and viscoelastic thin layers. Int J Solids Struct 69–70:507–517. https://doi.org/10.1016/j.ijsolstr.2015.04.034

    Article  Google Scholar 

  25. Pei L, Hyun S, Molinari J, Robbins M (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53:2385–2409. https://doi.org/10.1016/j.jmps.2005.06.008

    Article  MATH  Google Scholar 

  26. Hyun S, Pei L, Molinari J-F, Robbins M (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70:026117. https://doi.org/10.1103/PhysRevE.70.026117

    Article  Google Scholar 

  27. Paggi M, Reinoso J (2018) A variational approach with embedded roughness for adhesive contact problems. Mech Adv Mater Struct 10(1080/15376494):1525454

    Google Scholar 

  28. Zavarise G, Wriggers P, Stein E, Schrefler B (1992) Real contact mechanisms and finite element formulation-a coupled thermomechanical approach. Int J Numer Methods Eng 35:767–785

    Article  Google Scholar 

  29. Lenarda P, Gizzi A, Paggi M (2018) A modeling framework for electro-mechanical interaction between excitable deformable cells. Eur J Mech A/Solids 72:374–392

    Article  MathSciNet  Google Scholar 

  30. Popp A, Wriggers P (2018) Contact modeling for solids and particles, CISM international centre for mechanical sciences. Springer International Publishing, Berlin

    Book  Google Scholar 

  31. Seitz A, Wall WA, Popp A (2019) Nitsche’s method for finite deformation thermomechanical contact problems. Comput Mech 63(6):1091–1110. https://doi.org/10.1007/s00466-018-1638-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Seitz A, Wall WA, Popp A (2018) A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Adv Model Simul Eng Sci 5(1):5. https://doi.org/10.1186/s40323-018-0098-3

    Article  Google Scholar 

  33. Farah P, Wall WA, Popp A (2017) An implicit finite wear contact formulation based on dual mortar methods. Int J Numer Methods Eng 111(4):325–353. https://doi.org/10.1002/nme.5464

    Article  MathSciNet  Google Scholar 

  34. Barber J (2003) Bounds on the electrical resistance between contacting elastic rough bodies. Proc R Soc Lond A 459:53–66. https://doi.org/10.1098/rspa.2002.1038

    Article  MathSciNet  MATH  Google Scholar 

  35. Barber J (2010) Elasticity, 3rd edn. Springer, Dordrecht

    Book  Google Scholar 

  36. Bemporad A, Paggi M (2015) Optimization algorithms for the solution of the frictionless normal contact between rough surfaces. Int J Solids Struct 69–70:94–105

    Article  Google Scholar 

  37. Paggi M, Barber J (2011) Contact conductance of rough surfaces composed of modified rmd patches. Int J Heat Mass Transf 54:4664–4672. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.011

    Article  MATH  Google Scholar 

  38. Conway H, Farnham K (1968) The relationship between load and penetration for a rigid, flat-ended punch of arbitrary cross section. Int J Eng Sci 6(9):489–496. https://doi.org/10.1016/0020-7225(68)90001-3

    Article  Google Scholar 

  39. Nakamura M (1993) Constriction resistance of conducting spots in an electric contact surface. WIT Trans Modell Simul 3:10. https://doi.org/10.2495/BT930121

    Article  Google Scholar 

  40. Peitgen H, Saupe D, Barnsley M (1988) The science of fractal images. Springer, Berlin

    MATH  Google Scholar 

  41. Yovanivich MM, Devaal J, Hegazy AH (1982) A statistical model to predict thermal gap conductance between conforming rough surfaces, In: 3rd joint thermophysics, fluids, plasma and heat transfer conference, American Institute of Aeronautics and Astronautics, Reston, Virigina. https://doi.org/10.2514/6.1982-888

  42. Yovanivich MM, Hegazy AH, Devaal J (1982) Surface hardness distribution effects upon contact, gap and joint conductances, In: 3rd Joint thermophysics, fluids, plasma and heat transfer conference, American Institute of Aeronautics and Astronautics, Reston, Virigina. https://doi.org/10.2514/6.1982-887

Download references

Acknowledgements

The authors would like to acknowledge funding from the MIUR-DAAD Joint Mobility Program 2017 to the project “Multi-scale modelling of friction for large scale engineering problems”. The project has been granted by the Italian Ministry of Education, University and Research (MIUR) and by the Deutscher Akademischer Austausch Dienst (DAAD) through funds of the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Bonari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonari, J., Marulli, M.R., Hagmeyer, N. et al. A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces. Comput Mech 65, 731–749 (2020). https://doi.org/10.1007/s00466-019-01791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01791-3

Keywords

Navigation