Skip to main content
Log in

Physicochemical Conditions of Ore Formation at the Kalguty Mo–W Deposit: Thermodynamic Modeling

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Thermodynamic modeling was carried out for the formation of Mo–W ores at the Kalguty deposit (Gornyi Altai). The modeling was based on the physicochemical conditions of Mo–W ore formation estimated from fluid inclusion data. Quartz–wolframite veins of the deposit were formed under the influence of homogeneous reduced carbonate–chloride fluids, which showed elevated W and Sb concentrations. Pyrite–chalcopyrite–molybdenite mineralization was formed under the influence of heterogeneous oxidized sulfate–carbonate–chloride fluids enriched in Cu, Mo, W, Bi, and S. The economic combined greisen–vein Mo–W (Be) mineralization of the Kalguty deposit was formed by the superposition of molybdenite–chalcopyrite mineralization on the mineral assemblages of earlier quartz–wolframite veins. Ore forming processes were modeled for the scenarios of isobaric cooling and rock–solution interaction in the presence of oxidized and reduced model solutions corresponding to the natural ore-forming fluids of the Kalguty deposit. The results of thermodynamic modeling allowed us to conclude that rock interaction with oxidizing acid solution enriched in Cu, Mo, Bi, W, and S is the most plausible model for the formation of the greisen Mo–W ores. The interaction was accompanied by the inversion of the Eh–pH parameters of oxidizing ore-forming fluid and changes in its metal content, salt composition, and gas components. The chalcopyrite–molybdenite mineralization was formed during cooling of hot (>400°C) metalliferous oxidizing acid fluids before the inversion of their Eh–pH parameters. Wolframite ores could be deposited from the same portion of ore-forming fluid after the Eh–pH inversion and cooling. The combined Mo–W mineralization of the Kalguty deposit could result from at least two hydrothermal rhythms characterized by similar physicochemical parameters of ascending ore-forming fluids. The level of ore formation of each successive hydrothermal rhythm moved upward. This resulted in the telescoping of the high-temperature chalcopyrite–molybdenite mineralization by the earlier wolframite mineralization. The obtained data indicate the significance of probable vertical movement of the ore formation zone during the multistage mineralization process for the development of certain sequences of formation of mineral assemblages observed in ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. Yu. Annikova, S. Z. Smirnov, E. N. Sokolova, S. V. Khromykh, A. G. Vladimirov, and A. V. Travin, “Evolution of magma sources during formation of the Eastern Kalugin rare-metal–htanitoid dike belt, Gorny Altai, Granites and Evolution of the Earth: Granites and Continental Crust. Proceedings of 2nd International Geological Conference, Ed. by N. N. Kruk et al., (SO RAN, Novosibirsk, 2014), pp. 15–17 [in Russian].

  2. A. N. Berzina, H. I. Stein, A. Zimmerman, and V. I. Sotnikov, “Re-Os ages for molibdenite from porphyry Co–Mo and greisen Mo–W deposits of Southern Siberia (Russia) preserve metallogenic record,” Miner. Explor. and Sustainble Development, Ed. by Eliopoulos , (Millpress, Rotterdam, 2003), pp. 231–234.

    Google Scholar 

  3. G. V. Bondarenko, and Yu. E. Gorbatyi, “Sulfur in hydrothermal fluid,” Experimental and Theoretical Modeling of Mineral Formation, Ed. by V. A. Zharikov, V. V. Fed’kin (Nauka, Moscow, 1998), pp. 393–409 [in Russian].

    Google Scholar 

  4. A. A. Borovikov and A. S. Borisenko, “Native sulphur in fluid inclusions from quartz ore veins of the W–Mo Kalguta deposit,” Abstracts of ACROFI IV, Eds. by T. P. Mernagh, et al., (Brisbane, 2012), pp. 9–11.

  5. A. A. Borovikov, A. S. Borisenko, I. D. Borisenko, and I. V. Gas’kov, Sulfur species in hydrothermal fluids and their role in ore formation, Proceedings of 16th All-Russian Conference on Thermobarogeochemistry, Ed. by I. S. Peretyazhko (Inst. Geograf. Sochavy SO RAN, Ir-kutsk, 2014), pp. 10–11 [in Russian].

  6. A. A. Borovikov, A. S. Borisenko, S. I. Shabalin, V. A. Goverdovskiy, and N. V. Bryanskiy, “Composition and metal contents of ore-forming fluids of the Kalguty Mo–W(Be) deposit (Gorny Altai),” Russ. Geol. Geophys. 57 (4), 507–518 (2016).

    Article  Google Scholar 

  7. A. Yu. Bychkov and S. S. Matveeva, “Thermodynamic model of the formation of ore bodies at the Akchatau wolframite greisen–vein deposit,” Geochem. Int. 46 (9), 867–886 (2008).

    Article  Google Scholar 

  8. P. A. Candela and H. D. Holland, “The partitioning of copper and molybdenum between silicate melts and aqueous fluids,” Geochim. Cosmochim. Acta 48 (2), 373–380 (1984).

    Article  Google Scholar 

  9. V. B. Dergachev, “Two types of ongonites and elvans,” Dokl. Akad. Nauk SSSR 306 (5), 1216–1219.

  10. V. B. Dergachev and E. I. Nikitina, “Contents of water and carbon dioxide and kinetics of their release from quartz of tungsten deposits of southeastern Gorny Altai,” Mineralogy and Petrography of Rocks of Major Ore Districts of Siberia, Ed. by V. G. Korel (Nauka, Novosibirsk, 1983), pp. 18–27 [in Russian].

    Google Scholar 

  11. V. B. Dergachev N. I. Timofeev, and I. N. Ladygina, “Zoning of the Kalguty molybdenum–tungsten deposit,” in Zoning of Ore Deposits of Siberia, Ed. by N. N. Amshinsky et al., (SNIIGGiMS, Novosibirsk, 1981), Vol. 289, pp. 84–91 [in Russian].

  12. V. G. Gonevchuk, G. A. Gonevchuk, P. G. Korostelev, B. I. Semenyak, and R. Sltmann, “Tin deposits of the Sikhote–Alin and adjacent areas (Russian Far East) and their magmatic association,” J. Aust. Geol. Geophys. 57, 777–802 (2010).

    Google Scholar 

  13. V. A. Goverdovskii, “Geological position and formation types of tungsten mineralization of Gorny Altai and adjacent territories of Tyva and Mongolia,” Natural Resources of Gorny Altai, Ed. by V. A. Goverdovskii (RIO Univer-Print, Gorno-Altaisk, 1997), pp. 86–109 [in Russian].

  14. T. Graupner, U. Kempe, E. Dombon, O. Pätzold, O. Leeder, and E. T. C. Spooner, “Fluid regime and ore formation in the tungsten(-yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten-tin ore systems,” Chem. Geol. 154, 21–58 (1999).

    Article  Google Scholar 

  15. N. I. Gusev, “Chronology (SHRIMP II) of magmatism in the Kalguty rare-metal–tungsten–molybdenum ore–magmatic system, Gorny Altai, Russia,” Geol. Ore Deposits 53 (3), 248–263 (2011).

    Article  Google Scholar 

  16. W. Hummel, U. Berner, E. Curti, F. J. Pearson, and T. Thoenen, Nagra/PSI Chemical Thermodynamic Data Base 01/01. Nagra NTB 02–16 (National Cooperative for the Disposal of Radioactive Waste (Nagra) Wettingen, 2002).

  17. G. F. Ivanova, I. E. Masimyuk, I. G. Shuvalov, V. V. Bessonenko, and A. A. Borovikov, “Mineralogical–geochemical characteristics of wolframite mineralization from West Mongolia,” Geol. Ore Deposits 30 (4), 17–29 (1988).

    Google Scholar 

  18. G. F. Ivanova, G. M. Kolesov, V. S. Karpukhina, and E. V. Cherkasova, “Rare-earth elements and the genesis of ore mineralization at the Kalgutinskoe tungsten ore field, Gornyi Altai,” Geochem. Int. 44 (5), 508–515 (2006).

    Article  Google Scholar 

  19. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCR-T92: A soft-149 ware package for calculating the standard molal thermodynamic properties 150 of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000° 151 C,” Comp. Geosci. 18 (7), 899–947 (1992).

    Article  Google Scholar 

  20. P. Yu. Khodanovich, “Molybdenum–tungsten deposits of the Dzhida ore field,Transbaikalia Deposits, Ed. by N. P. Laverov (Geoinformmark, Moscow, 1995), pp. 149–163 [in Russian].

    Google Scholar 

  21. P. G. Korostelev, V. I. Gvozdev, S. B. Demashov, A. M. Kokorin, D. K. Kokorina, V. A. Kuksenko, A. P. Nedashkovsky, B. I. Semenyak, E. Ya. Sinyakov, and V. I. Suchkov, “Relations of tin and molybdenum mineralization in tin deposits of Far East,” Tikhookean. Geol., No. 3, 57–71 (1994).

  22. I. F. Kravchuk, S. D. Malinin, V. G. Senin, and V. F. Dernov-Pegarev, “Molybdenum partition between melts of natural and synthetic aluminosilicates and aqueous-salt fluids,” Geochem. Int. 38 (2), 130–137 (2000).

    Google Scholar 

  23. D. A. Kulik, T. Wagner, S. V. Dmytrieva, G. Kozakowski, F. F. Hingerl, K. V. Chudnenko, and U. Berner, “GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes,” Comp. Geosci. 17, 1–24 (2013).

    Google Scholar 

  24. E. V. Kuzhel’naya and V. B. Dergachev, “Vertical zoning of tungsten deposits of different age of Gorny Altai,” Geol. Geofiz., No. 5, 59–67 (1990).

  25. M. R. Landtwing, T. Pettke, W. E. Halter, C. A. Heinricha, P. B. Redmond, M. T. Einaudi, and K. Kunzec, “Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: the Bingham porphyry,” Earth Planet. Sci. Lett. 235, 229–243 (2005).

    Article  Google Scholar 

  26. M. R. Landtwing, C. Furrer, D. P. B. Redmon, T. Pettke, G. M. Guillon, and C. A. Heinric, “The Bingham Canyon porphyry Cu–Mo–Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion,” Econ. Geol.105, 91–118 (2010).

    Article  Google Scholar 

  27. B. N. Luzgin, “Spatial model of the mineralization of the Kalguty ore district, Gorny Altai,” Sov. Geologiya, No. 8, 94–97 (1988).

    Google Scholar 

  28. A. Moura, A. Dória, A. M. R. Neiva, C. Leal Gomes, and R. A. Creaser, “Metallogenesis at the Carris W–Mo–Sn deposit (Gerês, Portugal): constraints from fluid inclusions, mineral geochemistry, Re–Os and He–Ar isotopes,” Ore Geol. Rev. 56, 73–93 (2014).

    Article  Google Scholar 

  29. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, A Handbook of Thermodynamic Values (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  30. F. Pirajno, “The Kalguta Mo–W–Be–Bi greisen system, southeastern Altai (Russia), in Hydrothermal Processes and Mineral Systems, Ed. by Pirajno Franco, (Geological Survey of Western Australia, Springer Science & Business Media, Perth, 2008), pp. 258–260.

  31. G. S. Pokrovski and Jean Dubessy, “Stability and abundance of the trisulfur radical ion S−3 in hydrothermal fluids,” Earth Planet. Sci. Lett. 411, 298–309 (2015).

    Article  Google Scholar 

  32. A. A. Potseluev, D. I. Babkin, and V. I. Kotegov, The Kalguty complex deposit, the Gorny Altai: mineralogical and geochemical characteristics and fluid regime of ore formation, Geol. Ore Deposits 48 (5), 384–401 (2006).

    Article  Google Scholar 

  33. A. A. Potseluev, L. P. Rikhvanov, A. G. Vladimirov, I. Yu. Annikova, D. I. Babkin, A. Yu. Nikiforov, and V. I. Kotegov, The Kalguty Rare-Metal Deposit, Gorny Altai: Magmatism and Ore Genesis (TPI–IGM SO RAN, Tomsk, 2008) [in Russian].

    Google Scholar 

  34. V. I. Rekharsky, Molybdenum Geochemistry in Endogenous Processes (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  35. S. M. Rodionov, A. A. Schnaider, N. P. Romanovsky, and V. G. Gurovich, “Molybdenum mineralization in the ores of the Tigriny tin deposit (Primorye, Russia),” Geol. Ore Deposits 49 (4), 285–296 (2007).

    Article  Google Scholar 

  36. B. G. Ruska, H. Reeda Mark, J. H. Dillesb, L. M. Klemmc, and C. A. Heinrichc, “Compositions of magmatic hydrothermal fluids determinedS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT,” Chem. Geol. 210, 173–199 (2004).

    Article  Google Scholar 

  37. I. D. Ryabchikov, V. I. Rekharsky, and A. V. Kudrin, “Mobilization of molybdenum by magmatic fluids during crystallization of granitic melts,” Geokhimiya, No. 8, 1243–1246 (1981).

    Google Scholar 

  38. T. P. Salova, G. P. Orlova, and I. F. Kravchuk, M. B. Epelbaum, I. D. Ryabchikov, and S. D. Malinin, “On question of experimental determination of molybdenum partition coefficients between silicate melt and aqueous–salt fluid,” Geokhimiya, No. 2, 267–273 (1989).

    Google Scholar 

  39. S. P. Shokal’sky, G. A. Babin. A. G. Vladimirov, and S. M. Borisov, Correlation of magmatic and Metamorphic Complexes of the Western Altai–Sayan Fold Area (SO RAN, Novosibirsk, 2000) [in Russian]. E. V. Sobotovich, E. N. Bartnitskii, O. V. Tsyn, and L. V. Kononenko, A Handbook on Isotope Geochemistry (Energoizdat, Moscow, 1982) [in Russian].

  40. E. N. Sokolova, S. Z. Smirnov, E. I. Astrelina, I. Yu. Annikova, A. G. Vladimirov, and P. D. Kotlyar, “Ongonite–elvan magma of the Kalguty ore-magmatic system (Gorny Altai): composition, fluid regime, and ore genesis,” Russ. Geol. Geophys. 52 (11), 1378–1400 (2011).

    Article  Google Scholar 

  41. S. G. Soloviev, S. G. Kryazev, and S. S. Dvurechenskaya, “Geology, mineralization, stable isotope, and fluid inclusion characteristics of the Vostok-2 reduced W–Cu skarn and Au–W–Bi–As stockwork deposit, Sikhote- Alin, Russia,” Ore Geol. Rev. 86, 338–365 (2017).

    Article  Google Scholar 

  42. V. I. Sotnikov and E. I. Nikitina, Molybdenum–Rare Metal–Tungsten (Greisen) Formation of Gorny Altai (Nauka, Novosibirsk, 1971) [in Russian]. K. Z. Stel’machenok, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Buryat. Geol Inst., Ulan-Ude, 1995) [in Russian].

  43. A. I. Tugarinov, I. L. Khodakovsky, and A. P. Zhidikova, “Physicochemical conditions of molybdenite formation in hydrothermal uranium–molybdenum deposits,” Geokhimiya, No. 7, 975–984 (1973).

    Google Scholar 

  44. S. R. Walles, N. K. Muncaster, D. C. Jonson, W. B. Mackenzie, A. A. Boostrom, and V. E. Surface, “Multiole intrusion and mineralization at Climax, Colorado, Ore Deposits of the United States, Ed. by J. D. Ridge (Am. Inst. Mininng Metal Petrol. Eng., New York, 1933–1967), vol. 1, pp. 605–640.

  45. S. R. Wallace, N. K. Muncaster, D. C. Jonson, W. B. MacKenzie, A. A. Bookstrom, and V. E. Surface, “Multiple intrusion and mineralization at Climax, Colorado,” In Ore deposits of the United States, 1933–1967 Ed. J.D. Ridge, (American Institute of Mining, Metallurgical, and Petroleum Engineers New York, 1968), pp. 605–640.

    Google Scholar 

  46. B. H. White, A. A. Bookstrom, R. J. Kamilli, M. V. Ganster, R. P. Smith, D. E. Ranta, and R. C. Steininger, “Character and origin of Climax-type molybdenum deposits,” 75th Anniversary Volume, Ed. by B. J. Skinner, 270–316 (1981).

    Google Scholar 

  47. A. P. Zhidikov and I. L. Khodakovsky, “Thermodynamic properties of ferberite, gubnerite, scheelite, and povellite),” Physicochemical Models of Petrogenesis and Ore Formation, Ed. by L. V. Tauson (Nauka, Novosibirsk, 1984), pp. 145–156 [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. A.Yu. Bychkov and a scientific editor of Geochemistry International for helpful suggestions and comments, which allowed us to increase the correctness of the presentation of results and improve the text and informativity of the manuscript. We also thank S.G Solov’ev for previous comments, which were very useful during manuscript preparation. This study was financially supported by State Assignment Project no. 0330-2016-0001 and the Russian Foundation for Basic Research, project no. 15-05-0769017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Borovikov, L. V. Gushchina, V. A. Goverdovskii or V. O. Gimon.

Additional information

Translated by A. Girnis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovikov, A.A., Gushchina, L.V., Goverdovskii, V.A. et al. Physicochemical Conditions of Ore Formation at the Kalguty Mo–W Deposit: Thermodynamic Modeling. Geochem. Int. 58, 27–39 (2020). https://doi.org/10.1134/S0016702920010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920010024

Keywords:

Navigation