Skip to main content
Log in

Two Types of Highly Differentiated Topaz-Bearing Granites of the Salmi Batholith, Southern Karelia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Differences between two types of highly differentiated granites of the Salmi batholith: namely Li-siderophyllite topaz-bearing and Li–F topaz-zinnwaldite granites, were determined based on the study of their structural-morphological, mineralogical and geochemical features are determined. The high degree of the differentiation of these granites is confirmed by the presence of primary topaz, Li-micas of magmatic origin and by the presence of significative tetrad effect of M type. These granites are distinguished due to the types of their micas, the content of topaz (up to 1 and 15%, respectively), the morphology of granite intrusions and the geochemistry of rare elements. The Li–F zinnwaldite granites are depleted in REE and enriched in Ta, Hf, Ba, Sr compared to the Li-siderophyllite granites. The Li-siderophyllite granites clearly fit to the general evolution trend of the Salmi batholith granites, while the genesis of Li–F zinnwaldite granites seems to be associated not only with the processes of crystallization differentiation of the melt but also with the active addition of some components, primarily F and Li, probably from a deeper source, including the mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. M. Aksyuk, “Experimentally established geofluorimeters and the fluorine regime in granite–related fluids,” Petrology 10 (6), 557–569 (2002).

    Google Scholar 

  2. Yu. Amelin, A. Beljaev, A. Larin, L. Neymark, and K. Stepanov, Salmi Batholith and Pitkaranta Ore Field in Soviet Karelia, Guide 33, Ed. by I. Haapala, O. T. Ramo, and P. T. Salonsaari (University of Helsinki, 1991).

    Google Scholar 

  3. Yu. V. Amelin, A. M. Larin, and R. D. Tucker, “Chronology of multiphase emplacement of the Salmi rapakivi granite–anorthosite complex, Baltic Shield: implications for magmatic evolution,” Contrib. Mineral. Petrol. 127 (4), 353–368 (1997).

    Article  Google Scholar 

  4. E. Anders and N. Grevesse, “Abundances of the elements: meteoritic and solar,” Geochim. Cosmochim. Acta 53 (1), 197–214 (1989).

    Article  Google Scholar 

  5. A. Beljaev and K. Stepanov, “Internal structure and composition of the Salmi batholith,” Salmi Batholith and Pitkaranta Ore Field in Soviet Karelia, Ed. by I. Haapala, O. T. Ramo, and P. T. Salonsaari, Guide 33. (University of Helsinki, 1991), pp. 8–11.

  6. A. M. Belyaev, “On the problem of genesis of K–feldspar ovoids and porphyritic quartz in rapakivi granite and related rocks, Vestn. St. Peterb. Gos. Univ., Nauki Zemle 62 (1), 3–19 (2017).

    Google Scholar 

  7. A. M. Belyaev and B. K. L’vov, “Mineralogical–geochemical specialization of the granite rapakivi granites of the Salma massif,” Vestn. Lenigrad. Gos. Univ., No. 6, 15–24 (1981).

  8. S. M. Beskin, E. N. Lishnevskii, and M. I. Didenko, “Structure of the Pitkyaranta granite massif in the Northern Ladoga region, Karelia, Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 19–26 (1983).

  9. A. Ebadi and W. Johannes, “Beginning of melting and composition of first melts in the system Q–Ab–Or–H2O–CO2,” Contrib. Mineral. Petrol. 106, 286–295 (1991).

    Article  Google Scholar 

  10. O. Eklund and A. D. Shebanov, “The origin of rapakivi texture by sub–isothermal decompression,” Precambrian Res. 95 (1–2), 129–146 (1999).

    Article  Google Scholar 

  11. V. A. Glebovitsky, L. S. Egorov, V. V. Zhdanov, et al., Petrographic Code. Magmatic and Metamorphic Rocks (VSEGEI, St. Petersburg, 1995) [in Russian].

    Google Scholar 

  12. E. N. Gramenitsky and T. I. Shchekina, “Behavior of rare earth elements and yttrium during the final differentiation stages of flourine–bearing magmas,” Geochem. Int. 43 (1), 45–59 (2005).

    Google Scholar 

  13. E. N. Gramenitsky, T. I. Shchekina, and S. M. Klyuchareva, “Rare-metal lithium–fluorine granites of the Uksa massif and their place in the formation of the Salma pluton,” Vestn. Mosk. Univ. Ser. 4: Geol., no. 1, 41–49 (1998).

  14. W. Irber, “The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites,” Geochim. Cosmochim. Acta 63 (3/4), 489–508 (1999).

    Article  Google Scholar 

  15. V. I. Ivashchenko and A. I. Golubev, “New aspects of mineralogy and metallogeny of the Pitkyaranta ore region,” Tr. Kar. Nauchn. Ts. Ross. Akad. Nauk, No. 7, 127–148 (2015).

    Google Scholar 

  16. V. I. Ivashchenko, M. Valkama, K. Sundblad, A. I. Golubev, and V. Yu. Alekseev, “New data on mineralogy and metallogeny of scarns in the Pitkyaranta ore region,” Dokl. Earth Sci. 440 (1), 1307–1311 (2011).

    Article  Google Scholar 

  17. V. K. Karandhashev, V. A. Khvostikov, S. Yu. Nosenko, and Z. P. Burmii, “Application of highly enriched stable isotopes in mass analysis of rocks, soils, and bottom sediments by inductively coupled plasma mass spectrometry,” Zavodskaya Lab. Diagnost. Mineral. 82 (7), 6–15 (2016).

    Google Scholar 

  18. R. A. Khazov, Geological Features of Tin Mineralization of the Northern Ladoga Area (Nauka, Leningrad, 1973) [in Russian].

    Google Scholar 

  19. V. I. Kovalenko, P. V. Koval, V. V. Konusova, E. V. Smirnova, and Yu. A. Balashov, “Geochemistry of rare-earth elements in the calc-alkaline intrusive rocks,” Geokhimiya, No. 2, 172–189 (1983).

    Google Scholar 

  20. A. Larin, “Ore mineralization,” Salmi Batholith and Pitkaranta Ore Field in Soviet Karelia, Ed. by I. Haapala, O. T. Ramo, and P. T. Salonsaari, Guide 33 (University of Helsinki, 1991), pp. 19–34.

  21. A. Larin, A. Beljaev, and K. Stepanov, “Geological setting of the Salmi batholith,” Salmi Batholith and Pitkaranta Ore Field in Soviet Karelia, Ed. by I. Haapala, O. T. Ramo, and P. T. Salonsaari, Guide 33. (University of Helsinki, 1991), pp. 6–7.

  22. A. M. Larin, Rapakivi Granites and Associated Rocks (Nauka, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  23. D. A. C. Manning, “The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb,” Contrib. Mineral. Petrol. 76, 206–215 (1981).

    Article  Google Scholar 

  24. A. A. Marakushev, R. A. Khazov, Yu. B. Shapovalov, N. I. Bezmen, and G. M. Pavlov, “Nature of layering of lithium–fluorine granites,” Dokl. Akad. Nauk SSSSR, 318 (3), 695–699 (1991).

    Google Scholar 

  25. A. Masuda, O. Kawakami, Y. Dohmoto, and T. Takenaka, “Lanthanide tetrad effects in nature: two mutually opposite types, W and M,” Geochem. J. 21 (3), 119–124 (1987).

    Article  Google Scholar 

  26. L. A. Neymark, Yu. V. Amelin, and A. M. Larin, “Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite–anorthosite batholith (Karelia, Russia),” Mineral. Petrol. 50, 173–193 (1994).

    Article  Google Scholar 

  27. Zh. D. Nikol’skaya, “New data on the geology and metallogeny of the Salma rapakivi massif, Karelia,” Tr. VSEGEI, Nov. Serii, 230, 52–57 (1975).

    Google Scholar 

  28. G. M. Pavlov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (MGU. Moscow, 1991) [in Russian].

  29. I. S. Peretyazhko and E. A. Savina, “Fluid-magmatic processes during formation of rocks of the Ary-Bulak ongonite massif, Eastern Transbaikalia,” Russ. Geol. Geophys. 51 (10), 1423–1442 (2010a).

    Google Scholar 

  30. I. S. Peretyazhko and E. A. Savina, “Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride–silicate liquid immiscibility in magmatic systems,” Petrology 18 (5), 514–543 (2010b).

    Article  Google Scholar 

  31. M. Poutiainen and T. F. Scherbakova, “Fluid and melt inclusion evidence for the origin of idiomorphic quartz crystals in topaz–bearing granite from the Salmi batholith, Karelia, Russia,” Lithos 44, 141–151 (1998).

    Article  Google Scholar 

  32. F. G. Reyf, R. Seltmann, and G. P. Zaraisky “The role of magmatic processes in the formation of banded Li,F–enriched granites from the Orlovka tantalum deposit, Transbaikalia, Russia: Microthermometric evidence,” Can. Mineral. 38, 915–936 (2000).

    Article  Google Scholar 

  33. M. G. Rub, L. N. Khetchikov, Z. A. Kotelnikova, and A. K. Rub, “Inclusions of mineral-forming media in the minerals of the Precambrian tin-bearing granites of the Northern Ladoga area,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 30–36.

  34. Th. G. Sahama, “On the chemistry of the East Fennoscandian Rapakivi Granites,” Bull. Comm. Geol. Finlande 136, 15–67 (1945).

    Google Scholar 

  35. E. V. Sharkov, “Middle-Proterozoic anorthosite–rapakivi granite complexes: An example of within–plate magmatism in abnormally thick crust: evidence from the East European Craton,” Precambrian Res. 183, 689–700 (2010).

    Article  Google Scholar 

  36. A. D. Shebanov, A. M. Belyaev, and V. M. Savatenkov, “The significance of residual source material (restite) in rapakivi granite petrogenesis: an example from Salmi batholith, Russian Karelia,” Symposium on Rapakivi Granites and Related Rocks, Ed. by I. Haapala, O. T. Ramo, and P. Kosunen (University of Helsinki, 1996).

  37. L. P. Sviridenko, “The evolution of the fluid phase during the crystallization of granite types: Salmi pluton, Karelia, Russia,” Mineral. Petrol. 50, 59–67 (1994).

    Article  Google Scholar 

  38. L. P. Sviridenko, Petrology of the Salma Rapakivi Granite Massif in Karelia (Karel’sk. Knizh. Izd-vo, Petrozavodsk, 1968) [in Russian].

    Google Scholar 

  39. O. Trustedt, “Die Erzlagerstaatten von Pitkaranta am Ladoga–See,” Bull. Comm. Geol. Finland 19, (1907).

  40. I. V. Veksler, A. M. Dorfman, M. Kamenetsky, P. Dulski, and D. B. Dingwell, “Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks,” Geochim. Cosmochim. Acta. 69 (11), 2847–2860 (2005).

    Article  Google Scholar 

  41. D. A. Velikoslavinsky, A. P. Birkis, O. A. Bogatikov, et al., Anorthosite–rapakivi granite formation: East European Platform (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  42. J. R. Weidner and R. F. Martin, “Phase equilibria of a fluorine–rich leucogranite from the St. Austell pluton, Cornwall,” Geochim. Cosmochim. Acta. 51, 1591–1597 (1987).

    Article  Google Scholar 

  43. T. A. Yasnygina and S. V. Rasskazov, “Tetrad effect in rare earth element distribution patterns: Evidence from the Paleozoic granitoids of the Oka zone, Eastern Sayan,” Geochem. Int. 46 (8), 814–825 (2008).

    Article  Google Scholar 

  44. G. P. Zaraisky, A. M. Aksyuk, V. N. Devyatova, O. V. Udoratina, and V. Yu. Chevychelov, “Zr/Hf ratio as an indicator of fractionation of rare–metal granites by the example of the Kukulbei complex, Eastern Transbaikalia,” Petrology 16 (7), 710–736 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M.O. Anosova, N.V. Vasil’ev, V.K. Karandashev, E.A. Minervina, A.N. Nekrasov, A.I. Yakushev, and V.O. Yapaskurt for carrying out high-precision analyses. The manuscript was significantly modified and improved thanks to comments and recommendations from V.S. Antipin, T.I. Shchekina, and O.A. Lukanin.

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 18-05-01101A; 18-05-01001A, and 15-05-03393A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Konyshev.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyshev, A.A., Chevychelov, V.Y. & Shapovalov, Y.B. Two Types of Highly Differentiated Topaz-Bearing Granites of the Salmi Batholith, Southern Karelia. Geochem. Int. 58, 11–26 (2020). https://doi.org/10.1134/S0016702920010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920010073

Keyword

Navigation