Skip to main content
Log in

Energy Optimisation For End Face Turning With Variable Material Removal Rate Considering the Spindle Speed Changes

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Many studies have approved that optimising the cutting parameters is effective for reducing the energy consumption of machining operations of machine tools. However, this technique to reduce the end face turning energy consumption (EFTEC), where the material removal rate is variable, has not received attention. Besides, the energy consumed for the spindle speed changes was ignored in previous research. Aiming to fill these gaps, an integrated EFTEC model is developed considering the spindle speed changes. In terms of optimisation, the EFTEC model is discretised according to the allowable accuracy of the machine tool. Simulated annealing is adopted to search for the optimal values of cutting parameters that lead to the minimum EFTEC. In the case study, nine parts with changing diameters and cutting depths are machined by a lathe (CK6153i). According to the experiments, simulated annealing has more than 96% probability of obtaining the global optima. The optimum achieves a 14.03% EFTEC reduction for a case. The relationship between the design parameters and the optimal cutting parameters is discussed. A case shows that 2.43% of the machining time increases suffer from the EFTEC optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EC:

Energy consumption [J]

EFTEC:

End face turning energy consumption [J]

SA:

Simulated annealing

SRS:

Spindle rotation speed [rpm]

MRR:

Material removal rate [cm3/s]

\(\alpha_{A}\) :

Spindle’s angular acceleration [rad/s2]

\(\alpha_{D}\) :

Spindle’s angular deceleration [rad/s2]

\(A_{1} ,\,A_{2} ,\,A_{3}\) :

First, second, and third feeding activities

\(C_{1}\) :

Spindle acceleration from 0 to \(n\)

\(C_{2}\) :

Spindle deceleration from n to 0

\(C_{L}\) :

Coefficient in the tool life model

\(d\) :

Required cutting depth [mm]

\(d\left( t \right)\) :

Function of cutting depth against time [mm]

\(D_{0}\) :

Diameter of the part [mm]

\(E_{\text{eft}}\) :

Total EFTEC for single-pass end face turning [J]

\(E_{\text{fa}}\) :

EC for feeding activities in single-pass end face turning [J]

\(E_{\text{fa}}^{j}\) :

EC for the \(j\)-th feeding activity [J]

\(E_{\text{mc}}\) :

Material-cutting EC in single-pass end face turning [J]

\(E_{\text{sc}}\) :

EC for spindle speed changes in single-pass end face turning [J]

\(f\) :

Feed rate [mm/r]

\(f_{L} ,f_{U}\) :

Lower and upper bounds of feed rates in material-cutting [mm/r]

\(F_{\text{cut}}\) :

Material-cutting force when the fully cutting begins [N]

\(F_{U}\) :

Maximum allowable cutting force [N]

\(j\) :

Index for a feeding activity

\(k\) :

Index for the iteration

\(K\) :

Main angle of the cutter [°]

\(n\) :

Spindle rotation speed in material-cutting [rpm]

n max :

Maximum allowable SRS of the machine tool [rpm]

\(N_{L}\) :

Minimum required passes of end face turning within one tool life

\(P_{0}\) :

Basic power of the machine tool [W]

\(P_{\text{cut}}\) :

Machine tool power when the fully cutting begins [W]

\(P_{CS}\) :

Coolant spray power [W]

\(P_{\text{mc}} \left( t \right)\) :

Function of material-cutting power against time [W]

\(P_{SR}\) :

Spindle rotation power [W]

\(P_{U}\) :

Maximum available machine tool power [W]

\(P_{\text{XF}}^{2}\) :

X-axial feeding power for the second feeding activity [W]

\(P_{\text{XR}}\) :

X-axial rapid feeding power [W]

\(R_{N}\) :

Nose radius of the cutter [mm]

\(t\) :

Time variable [s]

\(t_{0}\) :

Moment when the material-cutting begins

\(t_{ce}\) :

Cutter entering duration in material-cutting [s]

\(t_{\text{fc}}\) :

Fully cutting duration in material-cutting [s]

\(t_{j}\) :

Time consumption of the machine tool for the \(j\)-th feeding activity [s]

\(t_{\text{mc}}\) :

Total material-cutting duration for the end face turning [s]

\(t_{\text{XR}}^{j}\) :

X-axial rapid feeding time for the \(j\)-th feeding activity [s]

\(t_{\text{ZR}}^{j}\) :

Z-axial rapid feeding time for the \(j\)-th feeding activity [s]

\(T_{L}\) :

Tool life model for end face turning [s]

\(T_{s}\) :

Spindle’s acceleration torque [N m]

\(v\left( t \right)\) :

Function of cutting speed against time [m/min]

\(v_{L} ,v_{U}\) :

Lower and upper bounds of cutting speeds in the beginning of material-cutting [m/min]

\(v_{XR}\) :

X-axial rapid feeding speed [m/min]

\(v_{ZR}\) :

Z-axial rapid feeding speed [m/min]

\(w_{L} ,y_{L} ,x_{L}\) :

Exponents in the tool life model

\(w_{M} ,y_{M} ,x_{M}\) :

Exponents in the model of material-cutting power

\(w_{Q} ,y_{Q} ,x_{Q}\) :

Exponents in the model of material-cutting force

\(\Delta X_{j}\) :

Relative distance between the start and the end of the \(j\)-th feeding activity in X-axis [mm]

\(\Delta Z_{j}\) :

Relative distance between the start and the end of the \(j\)-th feeding activity in Z-axis [mm]

References

  1. Lee, H., Song, J., Min, S., Lee, H., Song, K. Y., Chu, C. N., et al. (2019). Research trends in sustainable manufacturing: a review and future perspective based on research databases. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 809–819.

    Article  Google Scholar 

  2. Lee, W., Kim, S. H., Park, J., & Min, B.-K. (2017). Simulation-based machining condition optimization for machine tool energy consumption reduction. Journal of Cleaner Production, 150, 352–360.

    Article  Google Scholar 

  3. Jia, S., Tang, R., & Lv, J. (2016). Machining activity extraction and energy attributes inheritance method to support intelligent energy estimation of machining process. Journal of Intelligent Manufacturing, 27(3), 595–616.

    Article  Google Scholar 

  4. Liu, N., Zhang, Y. F., & Lu, W. F. (2019). Improving energy efficiency in discrete parts manufacturing system using an ultra-flexible job shop scheduling algorithm. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(2), 349–365.

    Article  Google Scholar 

  5. Jang, D., Jung, J., & Seok, J. (2016). Modeling and parameter optimization for cutting energy reduction in MQL milling process. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 5–12.

    Article  Google Scholar 

  6. Li, C., Xiao, Q., Tang, Y., & Li, L. (2016). A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. Journal of Cleaner Production, 135, 263–275.

    Article  Google Scholar 

  7. Jia, S., Yuan, Q., Cai, W., Lv, J., & Hu, L. (2019). Establishing prediction models for feeding power and material drilling power to support sustainable machining. The International Journal of Advanced Manufacturing Technology, 100(9), 2243–2253.

    Article  Google Scholar 

  8. Zhou, L., Li, J., Li, F., Meng, Q., Li, J., & Xu, X. (2016). Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. Journal of Cleaner Production, 112, 3721–3734.

    Article  Google Scholar 

  9. Bhinge, R., Park, J., Law, K. H., Dornfeld, D. A., Helu, M., & Rachuri, S. (2017). Toward a generalized energy prediction model for machine tools. Journal of Manufacturing Science and Engineering, 139(4), 041013.

    Article  Google Scholar 

  10. Kim, D., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y., Oh, J. W., et al. (2018). Smart machining process using machine learning: a review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 555–568.

    Article  Google Scholar 

  11. Shi, K., Ren, J., Wang, S., Liu, N., Liu, Z., Zhang, D., et al. (2019). An improved cutting power-based model for evaluating total energy consumption in general end milling process. Journal of Cleaner Production, 231, 1330–1341.

    Article  Google Scholar 

  12. Chen, X., Li, C., Jin, Y., & Li, L. (2018). Optimization of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. The International Journal of Advanced Manufacturing Technology, 96(1–4), 775–788.

    Google Scholar 

  13. Bhushan, R. K. (2013). Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production, 39, 242–254.

    Article  Google Scholar 

  14. Xiao, Q., Li, C., Tang, Y., Li, L., & Li, L. (2019). A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning. Energy, 166, 142–156.

    Article  Google Scholar 

  15. Campatelli, G., Lorenzini, L., & Scippa, A. (2014). Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel. Journal of Cleaner Production, 66, 309–316.

    Article  Google Scholar 

  16. Li, W., Winter, M., Kara, S., & Herrmann, C. (2012). Eco-efficiency of manufacturing processes: A grinding case. CIRP Annals-Manufacturing Technology, 61(1), 59–62.

    Article  Google Scholar 

  17. Mori, M., Fujishima, M., Inamasu, Y., & Oda, Y. (2011). A study on energy efficiency improvement for machine tools. CIRP Annals-Manufacturing Technology, 60(1), 145–148.

    Article  Google Scholar 

  18. Zhang, L., Zhang, B., & Bao, H. (2018). Cutting parameters optimization of thread turning oriented to low carbon and low noise. Computer Integrated Manufacturing Systems, 24(3), 639–648. (in Chinese).

    Google Scholar 

  19. Wang, B., Liu, Z., Song, Q., Wan, Y., & Ren, X. (2020). An approach for reducing cutting energy consumption with ultra-high speed machining of Super Alloy Inconel 718. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 35–51.

    Article  Google Scholar 

  20. Jiang, Z., Gao, D., Lu, Y., Kong, L., & Shang, Z. (2019). Quantitative analysis of carbon emissions in precision turning processes and industrial case study. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00155-9.

    Article  Google Scholar 

  21. Jia, S., Tang, R., Lv, J., Zhang, Z., & Yuan, Q. (2016). Energy modeling for variable material removal rate machining process: an end face turning case. The International Journal of Advanced Manufacturing Technology, 85(9–12), 2805–2818.

    Article  Google Scholar 

  22. Hu, L., Peng, C., Evans, S., Peng, T., Liu, Y., Tang, R., et al. (2017). Minimising the machining energy consumption of a machine tool by sequencing the features of a part. Energy, 121, 292–305.

    Article  Google Scholar 

  23. Hu, L., Tang, R., He, K., & Jia, S. (2015). Estimating machining-related energy consumption of parts at the design phase based on feature technology. International Journal of Production Research, 53(23), 7016–7033.

    Article  Google Scholar 

  24. Hu, L., Liu, Y., Peng, C., Tang, W., Tang, R., & Tiwari, A. (2018). Minimising the energy consumption of tool change and tool path of machining by sequencing the features. Energy, 147, 390–402.

    Article  Google Scholar 

  25. Hu, L., Liu, Y., Lohse, N., Tang, R., Lv, J., Peng, C., et al. (2017). Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed. Energy, 139, 935–946.

    Article  Google Scholar 

  26. Camposeco-Negrete, C. (2015). Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. Journal of Cleaner Production, 91, 109–117.

    Article  Google Scholar 

  27. Yusup, N., Zain, A. M., & Hashim, S. Z. M. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert Systems with Applications, 39(10), 9909–9927.

    Article  Google Scholar 

  28. Deng, Z., Lv, L., Huang, W., & Shi, Y. (2019). A high efficiency and low carbon oriented machining process route optimization model and its application. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 23–41.

    Article  Google Scholar 

  29. Asokan, P., Saravanan, R., & Vijayakumar, K. (2003). Machining parameters optimisation for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing (SA). The International Journal of Advanced Manufacturing Technology, 21(1), 1–9.

    Article  Google Scholar 

  30. Hu, L., Tang, R., Cai, W., Feng, Y., & Ma, X. (2019). Optimisation of cutting parameters for improving energy efficiency in machining process. Robotics and Computer-Integrated Manufacturing, 59, 406–416.

    Article  Google Scholar 

  31. He, K., Tang, R., Zhang, Z., & Sun, W. (2016). Energy consumption prediction system of mechanical processes based on empirical models and computer-aided manufacturing. Journal of Computing and Information Science in Engineering, 16(4), 041008.

    Article  Google Scholar 

  32. Yoon, H., Lee, J., Kim, M. S., Kim, E., Shin, Y., Kim, S., et al. (2020). Power consumption assessment of machine tool feed drive units. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 455–464.

    Article  Google Scholar 

  33. Lv, J., Tang, R., Tang, W., Liu, Y., Zhang, Y., & Jia, S. (2017). An investigation into reducing the spindle acceleration energy consumption of machine tools. Journal of Cleaner Production, 143, 794–803.

    Article  Google Scholar 

  34. Lv, J. (2014). Research on energy supply modeling of computer numerical control machine tools for low carbon manufacturing [dissertation]. Hangzhou: Zhejiang University. (in Chinese).

    Google Scholar 

  35. Lu, C., Gao, L., Li, X., & Chen, P. (2016). Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm. Journal of Cleaner Production, 137, 1516–1531.

    Article  Google Scholar 

  36. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, P., Ma, J., & Zhang, D. M. (1999). Application of the simulated annealing algorithm to the combinatorial optimisation problem with permutation property: An investigation of generation mechanism. European Journal of Operational Research, 118(1), 81–94.

    Article  MATH  Google Scholar 

  38. Mahmoodpour, S., & Masihi, M. (2016). An improved simulated annealing algorithm in fracture network modeling. Journal of Natural Gas Science and Engineering, 33, 538–550.

    Article  Google Scholar 

  39. Farzad, H., & Ebrahimi, R. (2017). Die profile optimization of rectangular cross section extrusion in plane strain condition using upper bound analysis method and simulated annealing algorithm. Journal of Manufacturing Science and Engineering, 139(2), 021006.

    Article  Google Scholar 

  40. Gupta, R., Shishodia, K. S., & Sekhon, G. S. (2011). Optimization of grinding process parameters using enumeration method. Journal of Materials Processing Technology, 112(1), 63–67.

    Article  Google Scholar 

  41. Lv, J., Tang, R., Jia, S., & Liu, Y. (2016). Experimental study on energy consumption of computer numerical control machine tools. Journal of Cleaner Production, 112, 3864–3874.

    Article  Google Scholar 

  42. Sardinas, R. Q., Santana, M. R., & Brindis, E. A. (2006). Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence, 19(2), 127–133.

    Article  Google Scholar 

  43. Kumar, N. S., Shetty, A., Shetty, A., Ananth, K., & Shetty, H. (2012). Effect of spindle speed and feed rate on surface roughness of Carbon Steels in CNC turning. Procedia Engineering, 38, 691–697.

    Article  Google Scholar 

  44. Kara, S., & Li, W. (2011). Unit process energy consumption models for material removal processes. CIRP Annals-Manufacturing Technology, 60(1), 37–40.

    Article  Google Scholar 

  45. Cai, W., Li, L., Jia, S., Liu, C., Xie, J., & Hu, L. (2020). Task-oriented energy benchmark of machining systems for energy-efficient production. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 205–218.

    Article  Google Scholar 

  46. Jackson, M. A., Van Asten, A., Morrow, J. D., Min, S., & Pfefferkorn, F. E. (2018). Energy consumption model for additive-subtractive manufacturing processes with case study. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 459–466.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 51805479), the Research Committee of UM (Grant No. MYRG2018-00087-FBA), Zhejiang Postdoctoral Foundation (Grant No. zj2019026), and the SDUST Research Fund (Grant No. 2018YQJH103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Jia.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Cai, W., Shu, L. et al. Energy Optimisation For End Face Turning With Variable Material Removal Rate Considering the Spindle Speed Changes. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 625–638 (2021). https://doi.org/10.1007/s40684-020-00210-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00210-w

Keywords

Navigation