Skip to main content
Log in

Wear and Corrosion Properties of Stellite-6 Coating Fabricated by HVOF on Nickel–Aluminium Bronze Substrate

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ni–Al bronze (NAB) was coated with Stellite-6 through gas-fueled high-velocity oxyfuel spraying. Scanning electron microscopy observations revealed the accumulation of Tungsten-rich particles at the substrate-coating interface. These areas played an important role in the enhancement of the mechanical properties of the coating. The coating hardness increased 5 times with respect to the substrate one. The tribological analysis of the coating was done via pin on disk method. Results showed that abrasive wear is the dominant mechanism for the substrate; on the contrary, delamination is the dominant wear mechanism in the coating. The corrosion performance of bare and coated alloy was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. The corrosion potential of coated sample increases in comparison with bare alloy, corrosion current density decreases from 3.91 to 1.82 µA/cm2 and the capacitive resistance is much larger.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Y. Lv, L. Wang, Y. Han, X. Xu, W. Lu, Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree. Mater. Sci. Eng. A 643, 17–24 (2015)

    CAS  Google Scholar 

  2. J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, The corrosion of nickel-aluminium bronze in seawater. Corros. Sci. 47, 3336–3367 (2005)

    CAS  Google Scholar 

  3. Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Characterization of the corrosion product films formed on the as-cast and friction-stir processed Ni-Al bronze in a 3.5 wt% NaCl solution. Corrosion 71, 606–614 (2015)

    CAS  Google Scholar 

  4. Q. Luo, Z. Wu, Z. Qin, L. Liu, W. Hu, Surface modification of nickel-aluminum bronze alloy with gradient Ni–Cu solid solution coating via thermal diffusion. Surf. Coat. Technol. 309, 106–113 (2017)

    CAS  Google Scholar 

  5. M. Islam, J. Ellor, et al. Corrosion (2015)

  6. M. Koul, J. Gaies, An environmentally assisted cracking evaluation of UNS C64200 (Al–Si-Bronze) and UNS C63200 (Ni–Al-Bronze). J. Fail. Anal. Prev. 13, 8–19 (2013)

    Google Scholar 

  7. Q.N. Song, N. Xu, Y.F. Bao, Y.F. Jiang, W. Gu, Y.G. Zheng et al., Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5% NaCl solutions. Acta Metall. Sin. (English Lett.) 30, 712–720 (2017)

    CAS  Google Scholar 

  8. K.-S. Park, S. Kim, Corrosion and corrosion fatigue characteristics of Cast NAB coated with NAB by HVOF thermal spray. J. Electrochem. Soc. 158, C335 (2011)

    CAS  Google Scholar 

  9. H.J. Li, D. Grudgings, N. Larkin, J. Norrish, M. Callaghan, L. Kuzmikova, Optimization of welding parameters for repairing NiAl bronze components. Mater. Sci. Forum 706–709, 2980–2985 (2012)

    Google Scholar 

  10. S. Sriintharasut, B. Poopat, I. Phung-On, The effects of different types of welding current on the characteristics of nickel aluminum bronze using gas metal arc welding. Mater. Today Proc. 5, 9535–9542 (2018)

    CAS  Google Scholar 

  11. P. Sassatelli, G. Bolelli, M. Lassinantti Gualtieri, E. Heinonen, M. Honkanen, L. Lusvarghi et al., Properties of HVOF-sprayed stellite-6 coatings. Surf. Coat. Technol. 338, 45–62 (2018)

    CAS  Google Scholar 

  12. A.K. Lakshminarayanan, V. Balasubramanian, R. Varahamoorthy, S. Babu, Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology. Met. Mater. Int. 14, 779–789 (2008)

    CAS  Google Scholar 

  13. M. Jafari, J. Mostaghimi, H. Monajatizadeh, M. Rafiei, Microstructure evaluation of CO-222/SiC coating produced by the plasma spraying method. Surf. Eng. 34, 220–225 (2018)

    CAS  Google Scholar 

  14. Š. Houdková, E. Smazalová, The influence of high temperature exposure on the wear of selected HVOF sprayed coatings. Defect Diffus. Forum 368, 55–58 (2016)

    Google Scholar 

  15. Y. Liu, W. Liu, Y. Ma, S. Meng, C. Liu, L. Long et al., A comparative study on wear and corrosion behaviour of HVOF- and HVAF-sprayed WC–10Co–4Cr coatings. Surf. Eng. 33, 63–71 (2017)

    Google Scholar 

  16. C. Navas, A. Conde, M. Cadenas, J. de Damborenea, Tribological properties of laser clad Stellite 6 coatings on steel substrates. Surf. Eng. 22, 26–34 (2006)

    CAS  Google Scholar 

  17. R. Arji, D.K. Dwivedi, S.R. Gupta, Sand slurry erosive wear of thermal sprayed coating of stellite. Surf. Eng. 23, 391–397 (2007)

    CAS  Google Scholar 

  18. C.R. Ciubotariu, D. Frunzəverde, G. Mərginean, V.A. Serban, A.V. Bîrdeanu, Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings. Opt. Laser Technol. 77, 98–103 (2016)

    CAS  Google Scholar 

  19. R. Shoja-Razavi, Laser surface treatment of stellite 6 coating deposited by HVOF on 316L alloy. J. Mater. Eng. Perform. 25, 2583–2595 (2016)

    CAS  Google Scholar 

  20. T.S. Sidhu, S. Prakash, R.D. Agrawal, Hot corrosion studies of HVOF NiCrBSi and stellite-6 coatings on a Ni-based superalloy in an actual industrial environment of a coal fired boiler. Surf. Coat. Technol. 201, 1602–1612 (2006)

    CAS  Google Scholar 

  21. D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gos̈ciański, A. Bartkowska, Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding. Opt. Laser Technol. 68, 191–201 (2015)

    CAS  Google Scholar 

  22. S. Apay, B. Gulenc, Wear properties of AISI 1015 steel coated with stellite 6 by microlaser welding. Mater. Des. 55, 1–8 (2014)

    CAS  Google Scholar 

  23. G. Lucchetta, R. Giusti, S. Vezzù, P.F. Bariani, Investigation and characterization of Stellite-based wear-resistant coatings applied to steel moulds by cold-spray. CIRP Ann. Manuf. Technol. 64, 535–538 (2015)

    Google Scholar 

  24. A. Kusmoko, D.P. Dunne, H. Li, A comparative study for wear resistant of stellite 6 coatings on nickel alloy substrate produced by laser cladding, HVOF and plasma spraying techniques. Int. J. Curr. Eng. Technol. 4, 32–36 (2014)

    Google Scholar 

  25. J.R. Davis et al., Handbook of Thermal Spray Technology (ASM International, Cleveland, 2004)

    Google Scholar 

  26. G.A. Jackson, M. Bai, Z. Pala, T. Hussain, W. Sun, Small punch creep testing of thermally sprayed Stellite 6 coating: a comparative study of as-received vs post-heat treatment. Mater. Sci. Eng. A 749, 137–147 (2019)

    CAS  Google Scholar 

  27. G. Kong, D. Zhang, P.D. Brown, D.G. McCartney, S.J. Harris, Microstructural characterisation of high velocity oxyfuel thermally sprayed Stellite 6. Mater. Sci. Technol. 19, 1003–1011 (2003)

    CAS  Google Scholar 

  28. O.C. Brandt, Mechanical properties of HVOF coatings. J. Therm. Spray Technol. 4, 147–152 (1995)

    CAS  Google Scholar 

  29. G.Y. Koga, W. Wolf, R. Schulz, S. Savoie, C. Bolfarini, C.S. Kiminami et al., Corrosion and wear properties of FeCrMnCoSi HVOF coatings. Surf. Coat. Technol. 357, 993–1003 (2019)

    CAS  Google Scholar 

  30. D. Rivera, R.E. Wirz, N.M. Ghoniem, Experimental measurements of surface damage and residual stresses in micro-engineered plasma facing materials. J. Nucl. Mater. 486, 111–121 (2017)

    CAS  Google Scholar 

  31. P. Araujo, D. Chicot, M. Staia, J. Lesage, Residual stresses and adhesion of thermal spray coatings. Surf. Eng. 21, 35–40 (2005)

    CAS  Google Scholar 

  32. M. Xie, Y. Lin, P. Ke, S. Wang, S. Zhang, Z. Zhen et al., Influence of process parameters on high velocity oxy-fuel sprayed Cr3C2–25%NiCr coatings. Coatings 7, 98 (2017)

    Google Scholar 

  33. S. Vignesh, K. Shanmugam, V. Balasubramanian, K. Sridhar, Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings. Def. Technol. 13, 101–110 (2017)

    Google Scholar 

  34. T.A. Dobbins, R. Knight, M.J. Mayo, X.K. Sun, Q.S. Wang, Y.B. Liu et al., HVOF thermal spray deposited Y2O3-stabilized ZrO2 coatings for thermal barrier applications. J. Therm. Spray Technol. 12, 214–225 (2003)

    CAS  Google Scholar 

  35. Z. Pala, M. Bai, F. Lukac, T. Hussain, Laser clad and HVOF-sprayed stellite 6 coating in chlorine-rich environment with KCl at 700 °C. Oxid. Met. 88, 749–771 (2017)

    CAS  Google Scholar 

  36. A.G.M. Pukasiewicz, H.E. de Boer, G.B. Sucharski, R.F. Vaz, L.A.J. Procopiak, The influence of HVOF spraying parameters on the microstructure, residual stress and cavitation resistance of FeMnCrSi coatings. Surf. Coat. Technol. 327, 158–166 (2017)

    CAS  Google Scholar 

  37. M. Vostřák, J. Tesař, Š. Houdková, E. Smazalová, M. Hruška, Diagnostic of laser remelting of HVOF sprayed Stellite coatings using an infrared camera. Surf. Coat. Technol. 318, 360–364 (2017)

    Google Scholar 

  38. R. Chattopadhyay, M. Park, Surface Wear: Analysis, Treatment, and Prevention (ASM International, Cleveland, 2001)

    Google Scholar 

  39. Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, G. Yang, Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes. Surf. Coat. Technol. 218, 127–136 (2013)

    CAS  Google Scholar 

  40. S. Harsha, D.K. Dwivedi, Microstructure, hardness and abrasive wear behaviour of flame sprayed Co based alloy coating. Surf. Eng. 23, 261–266 (2007)

    CAS  Google Scholar 

  41. J. Hardell, A. Yousfi, M. Lund, L. Pelcastre, B. Prakash, Abrasive wear behaviour of hardened high strength boron steel. Tribol. Mater. Surf. Interfaces 8, 90–97 (2014)

    CAS  Google Scholar 

  42. V. Bonache, M.D. Salvador, J.C. García, E. Sánchez, E. Bannier, Influence of plasma intensity on wear and erosion resistance of conventional and nanometric WC-Co coatings deposited by APS. J. Therm. Spray Technol. 20, 549–559 (2011)

    CAS  Google Scholar 

  43. R.A. Seraj, A. Abdollah-zadeh, S. Dosta, H. Assadi, I.G. Cano, Comparison of stellite coatings on low carbon steel produced by CGS and HVOF spraying. Surf. Coat. Technol. 372, 299–311 (2019)

    CAS  Google Scholar 

  44. A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism. Corros. Sci. 91, 245–261 (2015)

    CAS  Google Scholar 

  45. P.A. Sørensen, S. Kiil, K. Dam-Johansen, C.E. Weinell, Anticorrosive coatings: a review. J. Coat. Technol. Res. 6, 135–176 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohabbat Amirnejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.E., Naghshehkesh, N., Amirnejad, M. et al. Wear and Corrosion Properties of Stellite-6 Coating Fabricated by HVOF on Nickel–Aluminium Bronze Substrate. Met. Mater. Int. 27, 3269–3281 (2021). https://doi.org/10.1007/s12540-020-00697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00697-7

Keywords

Navigation