Skip to main content
Log in

Grape seed proanthocyanidins improves mitochondrial function and reduces oxidative stress through an increase in sirtuin 3 expression in EA.hy926 cells in high glucose condition

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Proanthocyanidins are phenolic compounds abundant in the diet, commonly found in grapes and derivatives, foods known for their health-promoting benefits. There is previous evidence showing the antidiabetic activity of proanthocyanidins, however, their mechanisms of action have not been fully elucidated. This study evaluated the capacity of grape seed proanthocyanidins extract (GSPE) to modulate oxidative stress, nitric oxide levels, mitochondrial dysfunction, apoptosis, and sirtuin expression in endothelial cells EA.hy926 under high glucose condition. In addition, the possible toxic effects of GSPE was evaluated in a zebrafish embryos model. The results showed that GSPE was able to enhance cell viability and avoid the disturbance in redox metabolism induced by high glucose. Moreover, GSPE was able to avoid mitochondria dysfunction and the increased in p53 and poly-(ADP-ribose) polymerase expression induced by high glucose exposition. These effects were attributed to the increase in expression of sirtuin 3, a protein able to regulate mitochondrial function. GSPE in an effective concentration did not show toxic effects in zebrafish embryos model. Taken together, these data elucidate the key molecular target of GSPE for future pharmacological interventions in diabetic patients.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carrizzo A, Izzo C, Oliveti M, Alfano A, Virtuoso N, Capunzo M et al (2018) The main determinants of diabetes mellitus vascular complications: endothelial dysfunction and platelet hyperaggregation. Int J Mol Sci 19(10):2968. https://doi.org/10.3390/ijms19102968

    Article  CAS  PubMed Central  Google Scholar 

  2. Liu G, Cao M, Xu Y, Li Y (2015) SIRT3 protects endothelial cells from high glucose-induced cytotoxicity. Int J Clin Exp Pathol 8(1):353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cahill PA, Redmond EM (2016) Vascular endothelium: gatekeeper of vessel health. Atherosclerosis 248:97–109. https://doi.org/10.1016/j.atherosclerosis.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luo X, Wu J, Jing S, Yan LJ (2016) Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis 7(1):90–110. https://doi.org/10.14336/AD.2015.0702

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai X, Bao L, Ren J, Li Y, Zhang Z (2016) Grape seed procyanidin B2 protects podocytes from high glucose-induced mitochondrial dysfunction and apoptosis via the AMPK-SIRT1-PGC-1α axis in vitro. Food Funct 7(2):805–815. https://doi.org/10.1039/c5fo01062d

    Article  CAS  PubMed  Google Scholar 

  7. Dang W (2013) The controversial world of sirtuins. Drug Discov Today Technol 12:1–17. https://doi.org/10.1038/mp.2011.182

    Article  Google Scholar 

  8. Verdin E, Hirschey MD, Finley LWS, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675. https://doi.org/10.1016/j.tibs.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J et al (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19(3):416–428

    Article  CAS  Google Scholar 

  10. Bosch-Presegué L, Vaquero A (2015) Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 282(9):1745–1767. https://doi.org/10.1111/febs.13053

    Article  CAS  PubMed  Google Scholar 

  11. Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging 5(3):144–150. https://doi.org/10.18632/aging.100544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892. https://doi.org/10.1089/ars.2012.4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez-Abuin N, Pinent M, Casanova-Marti A, Arola L, Blay M, Ardevol A (2015) Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem 22(1):39–50

    Article  CAS  Google Scholar 

  14. Zhou Y, Li B-Y, Li X-L, Wang Y-J, Zhang Z, Pei F et al (2016) Restoration of mimecan expression by grape seed procyanidin B2 through regulation of nuclear factor-kappaB in mice with diabetic nephropathy. Iran J Kidney Dis 10(5):325–331

    PubMed  Google Scholar 

  15. Mansouri E, Khorsandi L, Abdollahzad Fard A (2015) Protective role of grape seed proanthocyanidin antioxidant properties on heart of streptozotocin-induced diabetic rats. Vet Res Forum 6(2):119–124

    PubMed  PubMed Central  Google Scholar 

  16. Kim J, Kim K, Choi H, Park S, Stebbins CL (2018) Grape seed extract supplementation attenuates the blood pressure response to exercise in prehypertensive men. J Med Food 21(5):1–9. https://doi.org/10.1089/jmf.2017.0133

    Article  CAS  Google Scholar 

  17. Argani H, Ghorbanihaghjo A, Vatankhahan H, Rashtchizadeh N, Raeisi S, Ilghami H (2016) The effect of red grape seed extract on serum paraoxonase activity in patients with mild to moderate hyperlipidemia. Sao Paulo Med J 134(3):234–239. https://doi.org/10.1590/1516-3180.2015.01702312

    Article  PubMed  Google Scholar 

  18. Chen F, Wang H, Zhao J, Yan J, Meng H, Zhan H et al (2019) Grape seed proanthocyanidin inhibits monocrotaline-induced pulmonary arterial hypertension via attenuating inflammation: in vivo and in vitro studies. J Nutr Biochem 67:72–77. https://doi.org/10.1016/j.jnutbio.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  19. Lu J, Jiang H, Liu B, Baiyun R, Li S, Lv Y et al (2018) Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis. Food Chem Toxicol 116:59–69. https://doi.org/10.1016/j.fct.2018.03.034

    Article  CAS  PubMed  Google Scholar 

  20. Rauf A, Imran M, Abu-Izneid T, Iahtisham-Ul-Haq T, Patel S, Pan X, Rasul Suleria HA (2019) Proanthocyanidins: a comprehensive review. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2019.108999

    Article  PubMed  Google Scholar 

  21. Zhao H, Ma T, Fan B, Yang L, Han C, Lou J, Kong L (2016) Protective effect of trans-d-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway. Free Radical Res 50(1):68–83. https://doi.org/10.1515/znc-2015-0141

    Article  CAS  Google Scholar 

  22. Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7(6):1235–1246. https://doi.org/10.1038/nprot.2012.058

    Article  CAS  PubMed  Google Scholar 

  23. Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  24. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  CAS  Google Scholar 

  25. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1979) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0049-0172(79)90003-9

    Article  Google Scholar 

  26. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312. https://doi.org/10.1002/9780470110539.ch5

    Article  CAS  PubMed  Google Scholar 

  27. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  28. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids automated NO; and NO? Analysis 126(1):131–138. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  CAS  Google Scholar 

  29. dos Branco CS, de Lima ÉD, Rodrigues TS, Scheffel TB, Scola G, Laurino CCFC, Salvador M (2015) Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chemico-Biol Interact 231:108–118

    Article  Google Scholar 

  30. OECD (2013). Education at a glance 2013. DOI:10.1787/gov_glance-2011-en

  31. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) ZFIN embyonic developmental stages. Dev Dyn 10:253–310

    Article  Google Scholar 

  32. Poulsen RC, Knowles HJ, Carr AJ, Hulley PA (2014) Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis 5(2):e1074–e1112. https://doi.org/10.1038/cddis.2014.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao J, Zheng Z, Gu Q, Chen X, Liu X, Xu X (2016) Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage. Biochem Biophys Res Commun 472(3):425–431. https://doi.org/10.1016/j.bbrc.2015.12.037

    Article  CAS  PubMed  Google Scholar 

  34. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. https://doi.org/10.1038/35042675

    Article  CAS  PubMed  Google Scholar 

  35. Shen H, Zhao J, Liu Y, Sun G (2018) Interactions between and shared molecular mechanisms of diabetic peripheral neuropathy and obstructive sleep apnea in type 2 diabetes patients. J Diab Res 2018:1–15. https://doi.org/10.1155/2018/3458615

    Article  CAS  Google Scholar 

  36. Kang H, Ma X, Liu J, Fan Y, Deng X (2017) High glucose-induced endothelial progenitor cell dysfunction. Diab Vasc Dis Res 14(5):381–394. https://doi.org/10.1177/1479164117719058

    Article  CAS  PubMed  Google Scholar 

  37. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. https://doi.org/10.1089/ars.2009.2531

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qian Y, Babu PVA, Symons JD, Jalili T (2017) Metabolites of flavonoid compounds preserve indices of endothelial cell nitric oxide bioavailability under glucotoxic conditions. Nutr Diab 7(9):e286. https://doi.org/10.1038/nutd.2017.34

    Article  CAS  Google Scholar 

  39. Wu J, Luo X, Thangthaeng N, Sumien N, Chen Z, Rutledge MA et al (2017) Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem Biophys Rep 11:119–129. https://doi.org/10.1016/j.bbrep.2017.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silva Santos LF, Stolfo A, Calloni C, Salvador M (2017) Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts. J Arrhythmia 33(3):220–225. https://doi.org/10.1016/j.joa.2016.09.004

    Article  Google Scholar 

  41. Ramirez-Sanchez I, Mansour C, Navarrete-Yañez V, Ayala-Hernandez M, Guevara G, Castillo C et al (2018) (−)-Epicatechin induced reversal of endothelial cell aging and improved vascular function: underlying mechanisms. Food Funct 9(9):4802–4813. https://doi.org/10.1039/c8fo00483h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janssen RJRJ, Nijtmans LG, van den Heuvel LP, Smeitink JAM (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29(4):499–515. https://doi.org/10.1007/s10545-006-0362-4

    Article  CAS  PubMed  Google Scholar 

  43. Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder [Erratum appears in Arch Gen Psychiatry. 2010 Dec;67(12):1254]. Arch Gen Psychiatry 67(4):360–368

    Article  CAS  Google Scholar 

  44. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92(3):1479–1514. https://doi.org/10.1016/j.bmcl.2009.08.098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoon Y, Galloway CA, Jhun BS, Yu T (2011) Mitochondrial dynamics in diabetes. Antioxid Redox Signal 14(3):439–457. https://doi.org/10.1089/ars.2010.3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goutzourelas N, Stagos D, Housmekeridou A, Karapouliou C, Kerasioti E, Aligiannis N et al (2015) Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells. Int J Mol Med 36(2):433–441. https://doi.org/10.3892/ijmm.2015.2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goutzourelas N, Stagos D, Spanidis Y, Liosi M, Apostolou A, Priftis A et al (2015) Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells. Mol Med Rep 12(4):5846–5856. https://doi.org/10.3892/mmr.2015.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fusi J, Bianchi S, Daniele S, Pellegrini S, Martini C, Galetta F et al (2018) An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds. Biomed Pharmacother 101:805–819. https://doi.org/10.1016/j.biopha.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Wu S (2018) Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Mol Cell Biochem 448(1–2):175–185. https://doi.org/10.1007/s11010-018-3324-x

    Article  CAS  PubMed  Google Scholar 

  50. Song JH, Lee HJ, Kang KS (2019) Procyanidin C1 activates the Nrf2/HO-1 signaling pathway to prevent glutamate-induced apoptotic HT22 cell death. Int J Mol Sci. https://doi.org/10.3390/ijms20010142

    Article  PubMed  PubMed Central  Google Scholar 

  51. Han H, Wang H, Du Y, Gao L (2019) Grape seed procyanidins attenuates cisplatin-induced human embryonic renal cell cytotoxicity by modulating heme oxygenase-1 in vitro. Cell Biochem Biophys. https://doi.org/10.1007/s12013-019-00890-5

    Article  PubMed  Google Scholar 

  52. Pamanji R, Yashwanth B, Bethu MS, Leelavathi S, Ravinder K, Venkateswara Rao J (2015) Toxicity effects of profenofos on embryonic and larval development of Zebrafish (Danio rerio). Environ Toxicol Pharmacol 39(2):887–897. https://doi.org/10.1016/j.etap.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  53. Sarasquete C, Úbeda-manzanaro M, Ortiz-delgado JB (2018) Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comp Biochem Physiol C 211:57–67. https://doi.org/10.1016/j.cbpc.2018.05.012

    Article  CAS  Google Scholar 

  54. Wiegand C, Pflugmacher S, Giese M, Frank H, Steinberg C (2000) Uptake, toxicity, and effects on detoxication enzymes of atrazine and trifluoroacetate in embryos of zebrafish. Ecotoxicol Environ Saf 45(2):122–131. https://doi.org/10.1006/eesa.1999.1845

    Article  CAS  PubMed  Google Scholar 

  55. Vallverdú-queralt A, Boix N, Piqué E, Gómez-catalan J, Lamuela-raventos RM (2015) Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS. Food Chem 181:146–151. https://doi.org/10.1016/j.foodchem.2015.02.098

    Article  CAS  PubMed  Google Scholar 

  56. Li K, Liu C, Tam JC, Kwok H, Lau C, Leung P et al (2014) In vitro and in vivo mechanistic study of a novel proanthocyanidin, GC-(4→8)-GCG from cocoa tea (Camellia ptilophylla) in antiangiogenesis. J Nutr Biochem 25(3):319–328. https://doi.org/10.1016/j.jnutbio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  57. Lee IS, Yu SY, Jung SH, Lee YR, Lee YM, Kim JH, Sun H, Kim JS (2013) Proanthocyanidins from Spenceria ramalana and their effects on zebrafish in vivo AGE formation in vitro and hyaloid-retinal vessel dilation in larval. J Nat Prod 76(10):1881–1888

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and the Coordenação de Apoio de Pessoal de Nível Superior (CAPES). A.F.C. is the recipient of a CAPES Research Fellowship and M.S. is the recipient of a CNPq Research Fellowship (3033383/2015-1). Special thanks to L.A.B for technical contribution and M.A.O.S. for all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirian Salvador.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerbaro, A.F., Rodrigues, V.S.B., Rigotti, M. et al. Grape seed proanthocyanidins improves mitochondrial function and reduces oxidative stress through an increase in sirtuin 3 expression in EA.hy926 cells in high glucose condition. Mol Biol Rep 47, 3319–3330 (2020). https://doi.org/10.1007/s11033-020-05401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05401-x

Keywords

Navigation