Skip to main content
Log in

Recovery Rates of Used Rechargeable Lithium-Ion Battery Constituent Elements in Heat Treatment

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During the mass recycling of spent lithium-ion battery (LIB) packs, the packs that have not been disassembled are heat-treated to remove organic substances; further, the valuable metals obtained in the burnt product are recovered in the leaching process. Numerous methods have been reported for the efficient recovery of valuable metals in the leaching process; however, the material balance of the constituents of LIB during heat treatment has not been elucidated yet. In this study, the spent pack of lithium-ion secondary battery was employed wherein the positive electrode was essentially Li(Ni1/3Mn1/3Co1/3)O2 coated on an Al foil and the negative electrode was graphite coated on a Cu foil. Additionally, LiPF6 dissolved in propylene carbonate was used as the electrolyte, and the outer package was a cylindrical can composed of steel. After heat treatment of the spent LIB packs, Al2O3, Li2O-Al2O3-based compounds, MnO, Co, Ni, and Cu were found to be present in the cylindrical steel can of the burned product. Although high concentrations of the electrolyte elements of F and P were also present in the burned product, the amount recovered as dust from the exhaust gas treatment equipment was found to be higher as compared to that of the other elements; this amount was observed to reach or exceed 30 pct. Moreover, the constituent elements of the electrolyte such as Li, F, and P were converted to Li2O, LiF, and P2O5, leading to erosion of refractories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. B.A. Johnson and R.E. White: Journal of Power Sources, 1998, vol. 70, pp. 48-54.

    Article  CAS  Google Scholar 

  2. 2. M. Wakihara: Mater. Sci. Eng. R, 2001, vol. 33, pp. 109-134.

    Article  Google Scholar 

  3. 3. R. Moshtev and B. Johnson: Journal of Power Sources, 2000, vol. 91, pp. 86-91.

    Article  CAS  Google Scholar 

  4. Fuji Keizai Co Ltd (2016) Overall Status Survey of Battery Related Market, 2016, vol I. Fuji Keizai Co. Ltd, Tokyo (in Japanese)

    Google Scholar 

  5. 5. A. Yoshino: Bunseki, 2013, vol. 10, pp. 580-584

    Google Scholar 

  6. N. Nakatani, K. Moriwaki, and N. Yoshinaga: IEICE Technical Report. CPM, Electronic Components/Materials, 97(221), 15-22, 1997-08-05 (in Japanese).

  7. 7. Y. Kim, M. Matsuda, A. Shibayama, T. Miyazaki, and T. Hujita: Shigen-to-Sozai, 2002, vol. 118, pp. 687-693.

    Article  CAS  Google Scholar 

  8. 8. J. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J. Wang, and B. Liang: Journal of Power Sources, 2008, vol. 177, pp. 512–527.

    Article  CAS  Google Scholar 

  9. 9. T.G. Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz: Journal of Power Sources, 2012, vol. 207, pp. 173-182.

    Article  Google Scholar 

  10. 10. S. Koyanaka, K. Horai, H. Kawai, S. Kato, J. Shibata, N. Murayama, T. Ohki, and M. Masuda: J. MMIJ, 2012, vol. 128, pp. 232-240.

    Article  CAS  Google Scholar 

  11. 11. K. Horai, J. Shibata, N. Murayama, S. Koyanaka and M. Niinae: J. Japan Inst. Met. Mater., 2014, vol. 78, pp. 250-257.

    Article  CAS  Google Scholar 

  12. 12. K. Horiuchi, M. Matsuoka, C. Tokoro, S. Owada, and S. Usui: Kagaku Ronbunshu, 2017, vol. 43, pp. 213-218.

    Article  CAS  Google Scholar 

  13. Nie X, Xi X, Yang Y, Ning Q, Guo J, Wang M, Gu Z, Wu X (2019) Electrochim Acta. https://doi.org/10.1016/j.electacta.2019.134625

    Article  Google Scholar 

  14. 14. S. Junjie, P. Chao, C. Min, L. Yun, E. Hurman, K. Lassi, L. Mari, T. Pekka, and J.Ari: JOM, 2019, vol. 71, No. 12, pp. 4473-4482.

    Article  Google Scholar 

  15. 15. L. Li, P. Zheng, T. Yang, R. Sturges, M. Ellis, W. Michael, and Z. Li: JOM, 2019, vol. 71, pp. 4457-4464.

    Article  CAS  Google Scholar 

  16. 16. W. Wang, Y. Han, T. Zhang, L. Zhang, and S. Xu: ACS Sustainable Chem. Eng., 2019, vol. 7, No. 19, pp. 16729-16737.

    Article  CAS  Google Scholar 

  17. 17. C. Peng, C. Chang, Z. Wang, B.P. Wilson, F. Liu, and M. Lundström: JOM, 2019, https://doi.org/10.1007/s11837-019-03832-x

    Article  Google Scholar 

  18. 18. J. Lin, C. Liu, H. Cao, Y. Yang, R. Chen, L. Li, and Z. Sun: Green Chemistry, 2019, vol. 21, pp. 5904-5913.

    Article  CAS  Google Scholar 

  19. Murakami Y, Matsuzaki Y, Kamimura T, Nishiura T, Masuda K, Shibayama A, Inoue R (2019) Ceram Int. https://doi.org/10.1016/j.ceramint.2019.12.182

    Article  Google Scholar 

  20. Chemical Society of Japan, ed.: Handbook of Chemistry: Pure Chemistry, 5th revised edition, 2004 (in Japanese).

  21. Cook LP, Plante ER (1992) Ceram Trans Fabr Prop Lithium Ceram 3 27:193-222

    CAS  Google Scholar 

  22. 22. K.S. Gavrichev, G.A. Sharpataya, L.N. Golushina, V.N. Plakhotnik, I.V. Goncharova: Russian J. Inorg. Chem., 2002, vol. 47, pp. 940-944.

    Google Scholar 

  23. 23. E. Aukrust and A. Muan: Trans. Metall. Soc. AIME, 1964, vol. 230, pp. 378-382.

    CAS  Google Scholar 

  24. 24. A. Rahmel and P.J. Spencer: Oxid. Met., 1991, vol. 35, pp. 53-68.

    Article  CAS  Google Scholar 

  25. 25. W.C. Hahn, Jr. and A. Muan: Am. J. Sci., 1960, vol. 258, pp. 66-78.

    Article  CAS  Google Scholar 

  26. 26. J. Hu, J. Zhang, H. Li, Y. Chen, and C. Wang: J. Power Sources, 2017, vol. 351, pp. 192-199.

    Article  CAS  Google Scholar 

  27. 27. O. Knacke, O. Kubaschewski and K. Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd ed., 1991, Springer-Verlag, Berlin.

    Google Scholar 

  28. 28. A. Khorassani, G. Izquierdo and A.R. West: Mater. Res. Bull., 1981, vol.16, pp. 1561-1567.

    Article  CAS  Google Scholar 

  29. 29. V.P. Kochergin, L.V. Paderova, E.G. Viskova, S.S. Nokhrin, and N.N. Anikina: Rasplavy, 1987, vol. 1, pp. 102-109.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Inoue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 8, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, Y., Matsuzaki, Y., Murakami, K. et al. Recovery Rates of Used Rechargeable Lithium-Ion Battery Constituent Elements in Heat Treatment. Metall Mater Trans B 51, 1355–1362 (2020). https://doi.org/10.1007/s11663-020-01834-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01834-8

Navigation