Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Comparison of microtubules stabilized with the anticancer drugs cevipabulin and paclitaxel

Abstract

Microtubules, one of the major components of the cytoskeleton, play important roles as pathways for neuronal transport of cellular traffic. The loss of structural stability of microtubules causes detrimental effects on neurons and may contribute to several neurodegenerative diseases, such as Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, etc. The triazolopyrimidine class compound cevipabulin is a synthetic microtubule-stabilizing agent that has recently emerged as a drug for the treatment of Alzheimer’s disease. However, the mechanism of microtubule stabilization by cevipabulin has not yet been revealed. Here, we explored the effect of cevipabulin on stabilizing microtubules polymerized from purified tubulins in vitro. We observed the effects of the concentration of microtubule-stabilizing drugs, incubation time, and modification of the cevipabulin structure on the stabilization of microtubules in comparison to those of the most commonly used anticancer drug, paclitaxel. This study will provide insight into the action of cevipabulin in the treatment of neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Howard J. Mechanics of motor proteins and the cytoskeleton. Sunderland, MA: Sinauer Associates Inc.; 2001.

    Google Scholar 

  2. Doodhi H, Prota AE, Rodriguez-Garcia R, Xiao H, Custar DW, Bargsten K, et al. Termination of protofilament elongation by eribulin induces lattice defects that promote microtubule catastrophes. Curr Biol. 2016;26:1713–21.

    Article  CAS  Google Scholar 

  3. Scholey JM, Brust-Mascher I, Mogilner A. Cell division. Nature. 2003;422:746–52.

    Article  CAS  Google Scholar 

  4. Ross JL, Ali MY, Warshaw DM. Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol. 2008;20:41–7.

    Article  CAS  Google Scholar 

  5. Alberts PB, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of cell. New York: Garland Science; 2008.

    Google Scholar 

  6. Amos LA, Baker TS. The three-dimensional structure of tubulin protofilaments. Nature. 1979;279:607–12.

    Article  CAS  Google Scholar 

  7. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–42.

    Article  CAS  Google Scholar 

  8. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell. 1992;3:1141–54.

    Article  CAS  Google Scholar 

  9. Itoh TJ, Hotani H. Microtubule-stabilizing activity of microtubule-associated proteins (MAPs) is due to increase in frequency of rescue in dynamic instability: shortening length decreases with binding of MAPs onto microtubules. Cell Struct Funct. 1994;19:279–90.

    Article  CAS  Google Scholar 

  10. Dubey J, Ratnakaran N, Koushika SP. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci. 2015;9:343.

    Article  Google Scholar 

  11. Giannakakou P, Nakano M, Nicolaou KC, O’Brate A, Yu J, Blagosklonny MV, et al. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA. 2002;99:10855–60.

    Article  CAS  Google Scholar 

  12. Brunden KR, Trojanowski JQ, Smith AB, Lee VMY, Ballatore C. Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem. 2015;22:5040–9.

    Article  Google Scholar 

  13. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA. 1980;77:1561–5.

    Article  CAS  Google Scholar 

  14. Dordunoo SK, Burt HM. Solubility and stability of taxol: effects of buffers and cyclodextrins. Int J Pharm. 1996;133:191–201.

    Article  CAS  Google Scholar 

  15. Nicoletti MI, Colombo T, Rossi C, Monardo C, Stura S, Zucchetti M, et al. IDN5109, a taxane with oral bioavailability and potent antitumor activity. Cancer Res. 2000;60:842–6.

    CAS  PubMed  Google Scholar 

  16. Sáez-Calvo G, Sharma A, Balaguer F, de A, Barasoain I, Rodríguez-Salarichs J, et al. Triazolopyrimidines are microtubule-stabilizing agents that bind the vinca inhibitor site of tubulin. Cell Chem Biol. 2017;24:737–50.

    Article  Google Scholar 

  17. Beyer CF, Zhang N, Hernandez R, Vitale D, Lucas J, Nguyen T, et al. TTI-237: a novel microtubule-active compound with in vivo antitumor activity. Cancer Res. 2008;68:2292–300.

    Article  CAS  Google Scholar 

  18. Zhang N, Ayral-Kaloustian S, Nguyen T, Afragola J, Hernandez R, Lucas J, et al. Synthesis and sar of [1,2,4]triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J Med Chem. 2007;50:319–27.

    Article  CAS  Google Scholar 

  19. Ballatore C, Brunden KR, Trojanowski JQ, Lee VMY, Smith AB. Non-naturally occurring small molecule microtubule-stabilizing agents: a potential tactic for CNS-directed therapies. ACS Chem Neurosci. 2017;8:5–7.

    Article  CAS  Google Scholar 

  20. Beyer CF, Zhang N, Hernandez R, Vitale D, Nguyen T, Ayral-Kaloustian S, et al. The microtubule-active antitumor compound TTI-237 has both paclitaxel-like and vincristine-like properties. Cancer Chemother Pharmacol. 2009;64:681–9.

    Article  CAS  Google Scholar 

  21. Nasrin SR, Kabir AMR, Konagaya A, Ishihara T, Sada K, Kakugo A. Stabilization of microtubules by cevipabulin. Biochem Biophys Res Commun. 2019;516:760–4.

    Article  CAS  Google Scholar 

  22. Zhang N, Ayral-Kaloustian S, Nguyen T, Hernandez R, Lucas J, Discafani C, et al. Synthesis and SAR of 6-chloro-4-fluoroalkylamino-2-heteroaryl-5-(substituted)phenylpyrimidines as anti-cancer agents. Bioorg Med Chem. 2009;17:111–8.

    Article  Google Scholar 

  23. Zhang N, Ayral-Kaloustian S, Nguyen T, Hernandez R, Beyer C. 2-Cyanoaminopyrimidines as a class of antitumor agents that promote tubulin polymerization. Bioorg Med Chem Lett. 2007;17:3003–5.

    Article  CAS  Google Scholar 

  24. Lou K, Yao Y, Hoye AT, James MJ, Cornec AS, Hyde E, et al. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J Med Chem. 2014;57:6116–27.

    Article  CAS  Google Scholar 

  25. UCSF Chimera Home Page. http://www.cgl.ucsf.edu/chimera/. Accessed 20 Jan 2020.

  26. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Castoldi M, Popov AV. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr Purif. 2003;32:83–8.

    Article  CAS  Google Scholar 

  28. Peloquin J, Komarova Y, Borisy G. Conjugation of fluorophores to tubulin. Nat Methods. 2005;2:299–303.

    Article  CAS  Google Scholar 

  29. Yadava U, Gupta H, Roychoudhury M. Stabilization of microtubules by taxane diterpenoids: insight from docking and MD simulations. J Biol Phys. 2015;41:117–33.

    Article  CAS  Google Scholar 

  30. Li Y, Han L, Liu Z, Wang R. Comparative assessment of scoring functions on an updated benchmark: 2. evaluation methods and general results. J Chem Inf Model. 2014;54:1717–36.

    Article  CAS  Google Scholar 

  31. Srivastava HK, Chourasia M, Kumar D, Sastry GN. Comparison of computational methods to model DNA minor groove binders. J Chem Inf Model. 2011;51:558–71.

    Article  CAS  Google Scholar 

  32. Rao S, He L, Chakravarty S, Ojima I, Orr GA, Horwitz SB. Characterization of the Taxol binding site on the microtubule. Identification of Arg282 in β-tubulin as the site of photoincorporation of a 7-benzophenone analogue of Taxol. J Biol Chem. 1999;274:37990–4.

    Article  CAS  Google Scholar 

  33. Kumar N. Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem. 1981;256:10435–41.

    CAS  PubMed  Google Scholar 

  34. Kabir AMR, Wada S, Inoue D, Tamura Y, Kajihara T, Mayama H, et al. Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air-buffer interface. Soft Matter. 2012;8:10863–7.

    Article  Google Scholar 

  35. Rothwell SW, Grasser WA, Murphy DB. End-to-end annealing of microtubules in vitro. J Cell Biol 1986;102:619–27.

    Article  CAS  Google Scholar 

  36. Prabhune M, Von Roden K, Rehfeldt F, Schmidt CF. Sulfo-SMCC prevents annealing of taxol-stabilized microtubules in vitro. PLoS ONE. 2016;11:e0161623.

    Article  Google Scholar 

  37. Inoue D, Nitta T, Kabir AMR, Sada K, Gong JP, Konagaya A, et al. Sensing surface mechanical deformation using active probes driven by motor proteins. Nat Commun. 2016;7:12557.

    Article  CAS  Google Scholar 

  38. Matsuda K, Kabir AMR, Akamatsu N, Saito A, Ishikawa S, Matsuyama T, et al. Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 2019;19:3933–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Robot Technology Research and Development Project from New Energy and Industrial Technology Development Organization (NEDO), Japan, Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Engine” (JP18H05423 and JP18H03673) and Grant-in-Aid for Young Scientists (A) to AK from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrin, S.R., Ishihara, T., Kabir, A.M.R. et al. Comparison of microtubules stabilized with the anticancer drugs cevipabulin and paclitaxel. Polym J 52, 969–976 (2020). https://doi.org/10.1038/s41428-020-0334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0334-9

This article is cited by

Search

Quick links