Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYT1 attenuates neuroblastoma cell differentiation by interacting with the LSD1/CoREST complex

Abstract

Impaired neuronal differentiation is a feature of neuroblastoma tumorigenesis, and the differentiation grade of neuroblastoma tumors is associated with patient prognosis. Detailed understanding of the molecular mechanisms underlying neuroblastoma differentiation will facilitate the development of effective treatment strategies. Recent studies have shown that myelin transcription factor 1 (MYT1) promotes vertebrate neurogenesis by regulating gene expression. We performed quantitative analysis of neuroblastoma samples, which revealed that MYT1 was differentially expressed among neuroblastoma patients with different pathological diagnoses. Analysis of clinical data showed that MYT1 overexpression was associated with a significantly shorter 3-year overall survival rate and poor differentiation in neuroblastoma specimens. MYT1 knockdown inhibited proliferation and promoted the expression of multiple differentiation-associated proteins. Integrated omics data indicated that many genes involved in neuro-differentiation were regulated by MYT1. Interestingly, many of these genes are targets of the REST complex; therefore, we further identified the physical interaction of MYT1 with LSD1/CoREST. Depletion of LSD1 or inhibition of LSD1 by ORY-1001 decreased MYT1 expression, providing an alternative approach to target MYT1. Taken together, our results indicate that MYT1 significantly attenuates cell differentiation by interacting with the LSD1/CoREST complex. MYT1 is, therefore, a promising therapeutic target for enhancing the neurite-inducing effect of retinoic acid and for inhibiting the growth of neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MYT1 is expressed in neuroblastoma tissue.
Fig. 2: Downregulation of MYT1 is associated with differentiated neuroblastoma.
Fig. 3: Downregulation of MYT1 could inhibit neuroblastoma proliferation.
Fig. 4: Bioinformatic characterization of MYT1 molecules identified by RNA sequencing and quantitative proteomics.
Fig. 5: MYT1 regulates downstream genes by incorporation of the LSD1/CoREST complex.
Fig. 6: LSD1 is expressed in neuroblastoma tissue and is related to MYT1.

Similar content being viewed by others

References

  1. Anderson DJ, Axel R. A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell. 1986;47:1079–90.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson DJ, Carnahan JF, Michelsohn A, Patterson PH. Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci. 1991;11:3507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med. 2015;66:49–63.

    Article  CAS  PubMed  Google Scholar 

  4. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer. 2009;100:1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sidell N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst. 1982;68:589–96.

    CAS  PubMed  Google Scholar 

  7. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol. 2009;27:1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang Y, Yu VC, Buchholz F, O’Connell S, Rhodes SJ, Candeloro C, et al. A novel family of Cys-Cys, His-Cys zinc finger transcription factors expressed in developing nervous system and pituitary gland. J Biol Chem. 1996;271:10723–30.

    Article  CAS  PubMed  Google Scholar 

  9. Manukyan A, Kowalczyk I, Melhuish TA, Lemiesz A, Wotton D. Analysis of transcriptional activity by the Myt1 and Myt1l transcription factors. J Cell Biochem. 2018;119:4644–55.

    Article  CAS  PubMed  Google Scholar 

  10. Matsushita F, Kameyama T, Kadokawa Y, Marunouchi T. Spatiotemporal expression pattern of Myt/NZF family zinc finger transcription factors during mouse nervous system development. Dev Dyn. 2014;243:588–600.

    Article  CAS  PubMed  Google Scholar 

  11. Vasconcelos FF, Sessa A, Laranjeira C, Raposo A, Teixeira V, Hagey DW, et al. MyT1 counteracts the neural progenitor program to promote vertebrate neurogenesis. Cell Rep. 2016;17:469–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, et al. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature. 2017;544:245–9.

    Article  CAS  PubMed  Google Scholar 

  13. Romm E, Nielsen JA, Kim JG, Hudson LD. Myt1 family recruits histone deacetylase to regulate neural transcription. J Neurochem. 2005;93:1444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 2014;26:722–37.

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama A, Igarashi K, Sato T, Takagi K, Otsuka IM, Shishido Y, et al. Identification of myelin transcription factor 1 (MyT1) as a subunit of the neural cell type-specific lysine-specific demethylase 1 (LSD1) complex. J Biol Chem. 2014;289:18152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, Myers SJ, Dingledine R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci. 1999;2:867–72.

    Article  CAS  PubMed  Google Scholar 

  17. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  18. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell. 2005;121:645–57.

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Lett. 2003;197:185–92.

    Article  CAS  PubMed  Google Scholar 

  20. Xu G, Xiao Y, Hu J, Xing L, Zhao O, Wu Y. The combined effect of retinoic acid and LSD1 siRNA inhibition on cell death in the human neuroblastoma cell line SH-SY5Y. Cell Physiol Biochem. 2013;31:854–62.

    Article  CAS  PubMed  Google Scholar 

  21. Schor NF. Aiming at neuroblastoma and hitting other worthy targets. J Child Neurol. 2013;28:768–73.

    Article  PubMed  Google Scholar 

  22. Armstrong RC, Kim JG, Hudson LD. Expression of myelin transcription factor I (MyTI), a “zinc-finger” DNA-binding protein, in developing oligodendrocytes. Glia. 1995;14:303–21.

    Article  CAS  PubMed  Google Scholar 

  23. Bellefroid EJ, Bourguignon C, Hollemann T, Ma Q, Anderson DJ, Kintner C, et al. X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation. Cell. 1996;87:1191–202.

    Article  CAS  PubMed  Google Scholar 

  24. Hudson LD, Romm E, Berndt JA, Nielsen JA. A tool for examining the role of the zinc finger myelin transcription factor 1 (Myt1) in neural development: Myt1 knock-in mice. Transgen Res. 2011;20:951–61.

    Article  CAS  Google Scholar 

  25. Wang S, Zhang J, Zhao A, Hipkens S, Magnuson MA, Gu G. Loss of Myt1 function partially compromises endocrine islet cell differentiation and pancreatic physiological function in the mouse. Mech Dev. 2007;124:898–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature. 2005;437:432–5.

    Article  CAS  PubMed  Google Scholar 

  27. Singh A, Rokes C, Gireud M, Fletcher S, Baumgartner J, Fuller G, et al. Retinoic acid induces REST degradation and neuronal differentiation by modulating the expression of SCF(beta-TRCP) in neuroblastoma cells. Cancer. 2011;117:5189–202.

    Article  CAS  PubMed  Google Scholar 

  28. Qadeer ZA, Valle-Garcia D, Hasson D, Sun Z, Cook A, Nguyen C, et al. ATRX in-frame fusion neuroblastoma is sensitive to EZH2 inhibition via modulation of neuronal gene signatures. Cancer Cell. 2019;36:512–27. e519.

    Article  CAS  PubMed  Google Scholar 

  29. Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, et al. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA. 1999;96:9873–8.

    Article  CAS  PubMed  Google Scholar 

  30. Li L, Liu X, He L, Yang J, Pei F, Li W, et al. ZNF516 suppresses EGFR by targeting the CtBP/LSD1/CoREST complex to chromatin. Nat Commun. 2017;8:691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. You A, Tong JK, Grozinger CM, Schreiber SL. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci USA. 2001;98:1454–8.

    Article  CAS  PubMed  Google Scholar 

  32. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  33. Cho HS, Suzuki T, Dohmae N, Hayami S, Unoki M, Yoshimatsu M, et al. Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res. 2011;71:655–60.

    Article  CAS  PubMed  Google Scholar 

  34. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, et al. p53 is regulated by the lysine demethylase LSD1. Nature. 2007;449:105–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lee JY, Park JH, Choi HJ, Won HY, Joo HS, Shin DH, et al. LSD1 demethylates HIF1alpha to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis. Oncogene. 2017;36:5512–21.

    Article  CAS  PubMed  Google Scholar 

  36. Chen K, Cai Y, Zhang M, Wu Z, Wu Y. Both serum and tissue Galectin-1 levels are associated with adverse clinical features in neuroblastoma. Pediatr Blood Cancer. 2018;65:e27229.

    Article  PubMed  CAS  Google Scholar 

  37. Gu Y, Lv F, Xue M, Chen K, Cheng C, Ding X, et al. The deubiquitinating enzyme UCHL1 is a favorable prognostic marker in neuroblastoma as it promotes neuronal differentiation. J Exp Clin Cancer Res. 2018;37:258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Chen K, Cai Y, Cai Y, Yuan X, Wang L, et al. Annexin A2 could enhance multidrug resistance by regulating NF-kappaB signaling pathway in pediatric neuroblastoma. J Exp Clin Cancer Res. 2017;36:111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen K, Lv F, Xu G, Zhang M, Wu Y, Wu Z. Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma. Oncotarget. 2016;7:75968–80.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (No. 81572918) and Suzhou Clinical Medicine Innovation Team Introduction Project (SZYJTD201706) to YW, Shanghai Jiao Tong University School of Medicine Doctoral Innovation Fund (No. BXJ201826) to KC, Natural Science Foundation of China (No. 81402478), Shanghai Rising-Star Program (16QA1402900) to ZW, and Natural Science Foundation of China (No. 81672488) to GX. We thank Lisa Kreiner, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeming Wu or Zhixiang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Cai, Y., Cheng, C. et al. MYT1 attenuates neuroblastoma cell differentiation by interacting with the LSD1/CoREST complex. Oncogene 39, 4212–4226 (2020). https://doi.org/10.1038/s41388-020-1268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1268-6

This article is cited by

Search

Quick links