Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Active galactic nuclei as seen by the Spitzer Space Telescope

Abstract

The Spitzer Space Telescope revolutionized studies of active galactic nuclei (AGNs). Its combined sensitivity and mapping speed at mid-infrared wavelengths revealed a substantial population of highly obscured AGNs. This population implies a higher radiative accretion efficiency, and thus possibly a higher spin, for black holes than indicated by surveys at optical or X-ray wavelengths. The unique mid-infrared spectrographic capability of Spitzer gave important insights into the distribution and nature of the dust surrounding AGNs, enabling the separation of AGN and starburst components, the detection of silicate features in emission from hot dust, and the identification of shocked gas associated with AGN activity. Spitzer’s sensitivity allowed almost complete identification of the host galaxies of samples of AGNs selected in the X-ray and radio. As we look forward to the James Webb Space Telescope, the lessons learned from Spitzer studies will inform observational programmes with new and upcoming infrared facilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The torus model.
Fig. 2: Spectroscopic diagnostics of the mid-infrared emission from AGNs.
Fig. 3: The connection between an AGN and its host, as seen in the mid-infrared.
Fig. 4: Comparison of mid-infrared AGN selection techniques to results from the X-ray.
Fig. 5: The mid-infrared luminosity function of AGNs from combined Spitzer and WISE results.

Similar content being viewed by others

References

  1. Becklin, E. E. & Neugebauer, G. 1.65–19.5-micron observations of the Galactic Center. Astrophys. J. 157, L31–L36 (1969).

    ADS  Google Scholar 

  2. Kleinmann, D. E. & Low, F. J. Observations of infrared galaxies. Astrophys. J. 159, L165–L172 (1970).

    ADS  Google Scholar 

  3. Roche, P. F., Aitken, D. K., Phillips, M. M. & Whitmore, B. 8–13mu-m spectrophotometry of galaxies—II. 10 Seyferts and 3C 273. Mon. Not. R. Astron. Soc. 207, 35–45 (1984).

    ADS  Google Scholar 

  4. Ward, M. et al. The continuum of type 1 Seyfert galaxies. I. A single form modified by the effects of dust. Astrophys. J. 315, 74–91 (1987).

    ADS  Google Scholar 

  5. Edelson, R. A., Malkan, M. A. & Rieke, G. H. Broad-band properties of the CfA Seyfert galaxies. II. Infrared to millimeter properties. Astrophys. J. 321, 233–250 (1987).

    ADS  Google Scholar 

  6. Sanders, D. B. et al. Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74–91 (1988).

    ADS  Google Scholar 

  7. Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, L1–L4 (1998).

    ADS  Google Scholar 

  8. Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. Suppl. Series 163, 1–49 (2006).

    ADS  Google Scholar 

  9. Silk, J. & Nusser, A. The massive-black-hole-velocity-dispersion relation and the halo baryon fraction: a case for positive active galactic nucleus feedback. Astrophys. J. 725, 556–560 (2010).

    ADS  Google Scholar 

  10. Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).

    ADS  Google Scholar 

  11. Orr, M. J. L. & Browne, I. W. A. Relativistic beaming and quasar statistics. Mon. Not. R. Astron. Soc. 200, 1067–1080 (1982).

    ADS  Google Scholar 

  12. Urry, C. M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pacif. 107, 803–845 (1995).

    ADS  Google Scholar 

  13. Pier, E. A. & Krolik, J. H. Infrared spectra of obscuring dust tori around active galactic nuclei. I. Calculational method and basic trends. Astrophys. J. 401, 99–109 (1992).

    ADS  Google Scholar 

  14. Pier, E. A. & Krolik, J. H. Infrared spectra of obscuring dust tori around active galactic nuclei. II. Comparison with observations. Astrophys. J. 418, 673–686 (1993).

    ADS  Google Scholar 

  15. Nenkova, M., Ivezić, Ž. & Elitzur, M. Dust emission from active galactic nuclei. Astrophys. J. 570, L9–L12 (2002).

    ADS  Google Scholar 

  16. Nenkova, M., Sirocky, M. M., Ivezić, Ž. & Elitzur, M. AGN dusty tori. I. Handling of clumpy media. Astrophys. J. 685, 147–159 (2008).

    ADS  Google Scholar 

  17. Mullaney, J. R., Alexander, D. M., Goulding, A. D. & Hickox, R. C. Defining the intrinsic AGN infrared spectral energy distribution and measuring its contribution to the infrared output of composite galaxies. Mon. Not. R. Astron. Soc. 414, 1082–1110 (2011).

    ADS  Google Scholar 

  18. Genzel, R. et al. What powers ultraluminous IRAS galaxies? Astrophys. J. 498, 579–605 (1998).

    ADS  Google Scholar 

  19. Lutz, D., Spoon, H. W. W., Rigopoulou, D., Moorwood, A. F. M. & Genzel, R. The nature and evolution of ultraluminous infrared galaxies: a mid-infrared spectroscopic survey. Astrophys. J. 505, L103–L107 (1998).

    ADS  Google Scholar 

  20. Rigopoulou, D. et al. A large mid-infrared spectroscopic and near-infrared imaging survey of ultraluminous infrared galaxies: their nature and evolution. Astron. J. 118, 2625–2645 (1999).

    ADS  Google Scholar 

  21. Sturm, E. et al. ISO-SWS spectra of galaxies: continuum and features. Astron. Astrophys. 358, 481–493 (2000).

    ADS  Google Scholar 

  22. Le Floc’h, E. et al. Mid-infrared observations of NGC 1068 with the Infrared Space Observatory. Astron. Astrophys. 367, 487–497 (2001).

    ADS  Google Scholar 

  23. Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

    ADS  Google Scholar 

  24. Li, A. Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. Nat Astron. https://doi.org/10.1038/s41550-020-1051-1 (2020).

  25. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer space telescope. Astrophys. J. Suppl. Series 154, 10–17 (2004).

    ADS  Google Scholar 

  26. Rieke, G. H. et al. The Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. Series 154, 25–29 (2004).

    ADS  Google Scholar 

  27. Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. Series 154, 18–24 (2004).

    ADS  Google Scholar 

  28. Weedman, D. W. et al. Mid-infrared spectra of classical AGNs observed with the Spitzer Space Telescope. Astrophys. J. 633, 706–716 (2005).

    ADS  Google Scholar 

  29. Deo, R. P., Richards, G. T., Crenshaw, D. M. & Kraemer, S. B. The mid-infrared continua of Seyfert galaxies. Astrophys. J. 705, 14–31 (2009).

    ADS  Google Scholar 

  30. Wu, Y., Charmandaris, V., Huang, J., Spinoglio, L. & Tommasin, S. Spitzer/IRS 5–35 μm low-resolution spectroscopy of the 12 μm Seyfert sample. Astrophys. J. 701, 658–676 (2009).

    ADS  Google Scholar 

  31. Veilleux, S., Rupke, D. S. N., Kim, D.-C., Genzel, R. & Sturm, E. et al. Spitzer Quasar and ULIRG Evolution Study (QUEST). IV. Comparison of 1 Jy ultraluminous infrared galaxies with Palomar-Green quasars. Astrophys. J. Suppl. Series 182, 628–666 (2009).

    ADS  Google Scholar 

  32. Hatziminaoglou, E., Hernán-Caballero, A., Feltre, A. & Piñol Ferrer, N. A complete census of silicate features in the mid-infrared spectra of active galaxies. Astrophys. J. 803, 110 (2015).

    ADS  Google Scholar 

  33. Goulding, A. D. et al. Deep silicate absorption features in Compton-thick active galactic nuclei predominantly arise due to dust in the host galaxy. Astrophys. J. 755, 5 (2012).

    ADS  Google Scholar 

  34. Ogle, P., Whysong, D. & Antonucci, R. Spitzer reveals hidden quasar nuclei in some powerful FR II radio galaxies. Astrophys. J. 647, 161–171 (2006).

    ADS  Google Scholar 

  35. Dicken, D. et al. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification. Astrophys. J. 788, 98 (2014).

    ADS  Google Scholar 

  36. Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).

    ADS  Google Scholar 

  37. Tommasin, S. et al. Spitzer IRS high-resolution spectroscopy of the 12 μm Seyfert galaxies. I. First results. Astrophys. J. 676, 836–856 (2008).

    ADS  Google Scholar 

  38. Hao, L. et al. The detection of silicate emission from quasars at 10 and 18 microns. Astrophys. J. 625, L75–L78 (2005).

    ADS  Google Scholar 

  39. Spoon, H. W. W. et al. Mid-infrared galaxy classification based on silicate obscuration and PAH equivalent width. Astrophys. J. 654, L49–L52 (2007).

    ADS  Google Scholar 

  40. Pereira-Santaella, M., Diamond-Stanic, A. M., Alonso-Herrero, A. & Rieke, G. H. The mid-infrared high-ionization lines from active galactic nuclei and star-forming galaxies. Astrophys. J. 725, 2270–2280 (2010).

    ADS  Google Scholar 

  41. Shi, Y. et al. 9.7 μm silicate features in active galactic nuclei: new insights into unification models. Astrophys. J. 653, 127–136 (2006).

    ADS  Google Scholar 

  42. Meléndez, M. et al. New indicators for AGN power: the correlation between [O iv] 25.89 μm and hard X-ray luminosity for nearby Seyfert galaxies. Astrophys. J. 682, 94–103 (2008).

    ADS  Google Scholar 

  43. Diamond-Stanic, A. M., Rieke, G. H. & Rigby, J. R. Isotropic luminosity indicators in a complete AGN sample. Astrophys. J. 698, 623–631 (2009).

    ADS  Google Scholar 

  44. Farrah, D. et al. High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies. Astrophys. J. 667, 149–169 (2007).

    ADS  Google Scholar 

  45. Dasyra, K. M. et al. High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei. Astrophys. J. 674, L9–L12 (2008).

    ADS  Google Scholar 

  46. Feltre, A., Hatziminaoglou, E., Fritz, J. & Franceschini, A. Smooth and clumpy dust distributions in AGN: a direct comparison of two commonly explored infrared emission models. Mon. Not. R. Astron. Soc. 426, 120–127 (2012).

    ADS  Google Scholar 

  47. Mor, R. & Netzer, H. Hot graphite dust and the infrared spectral energy distribution of active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 526–541 (2012).

    ADS  Google Scholar 

  48. Hönig, S. F. et al. Dust in the polar region as a major contributor to the infrared emission of active galactic nuclei. Astrophys. J. 771, 87 (2013).

    ADS  Google Scholar 

  49. Ramos Almeida, C. & Ricci, C. Nuclear obscuration in active galactic nuclei. Nat. Astron. 1, 679–689 (2017).

    ADS  Google Scholar 

  50. Stalevski, M., Tristram, K. R. W. & Asmus, D. Dissecting the active galactic nucleus in Circinus—II. A thin dusty disc and a polar outflow on parsec scales. Mon. Not. R. Astron. Soc. 484, 3334–3355 (2019).

    ADS  Google Scholar 

  51. Lyu, J. & Rieke, G. H. Polar dust, nuclear obscuration, and IR SED diversity in type-1 AGNs. Astrophys. J. 866, 92 (2018).

    ADS  Google Scholar 

  52. Siebenmorgen, R., Haas, M., Krügel, E. & Schulz, B. Discovery of 10 μm silicate emission in quasars. Evidence of the AGN unification scheme. Astron. Astrophys. 436, L5–L8 (2005).

    ADS  Google Scholar 

  53. Sturm, E. et al. Silicate emissions in active galaxies: from LINERs to QSOs. Astrophys. J. 629, L21–L23 (2005).

    ADS  Google Scholar 

  54. Buchanan, C. L. et al. Spitzer IRS spectra of a large sample of Seyfert galaxies: a variety of infrared spectral energy distributions in the local active galactic nucleus population. Astron. J. 132, 401–419 (2006).

    ADS  Google Scholar 

  55. Nikutta, R., Elitzur, M. & Lacy, M. On the 10 μm silicate feature in active galactic nuclei. Astrophys. J. 707, 1550–1559 (2009).

    ADS  Google Scholar 

  56. Snyder, G. F. et al. Modeling mid-infrared diagnostics of obscured quasars and starbursts. Astrophys. J. 768, 168 (2013).

    ADS  Google Scholar 

  57. Roebuck, E. et al. The role of star formation and AGN in dust heating of z = 0.3–28 galaxies—II. Informing IR AGN fraction estimates through simulations. Astrophys. J. 833, 60 (2016).

    ADS  Google Scholar 

  58. Spoon, H. W. W. et al. Fire and ice: Spitzer Infrared Spectrograph (IRS) mid-infrared spectroscopy of IRAS F00183–7111. Astrophys. J. Suppl. Series 154, 184–187 (2004).

    ADS  Google Scholar 

  59. Lacy, M. et al. Large amounts of optically obscured star formation in the host galaxies of some type 2 quasars. Astrophys. J. 669, L61–L64 (2007).

    ADS  Google Scholar 

  60. Kirkpatrick, A. et al. The role of star formation and an AGN in dust heating of z = 0.3–28 galaxies. I. Evolution with redshift and luminosity. Astrophys. J. 814, 9 (2015).

    ADS  Google Scholar 

  61. Sajina, A., Yan, L., Fadda, D., Dasyra, K. & Huynh, M. Spitzer- and Herschel-based spectral energy distributions of 24 μm bright z ~ 0.3–30 starbursts and obscured quasars. Astrophys. J. 757, 13 (2012).

    ADS  Google Scholar 

  62. Kirkpatrick, A. et al. GOODS-Herschel: impact of active galactic nuclei and star formation activity on infrared spectral energy distributions at high redshift. Astrophys. J. 759, 139 (2012).

    ADS  MathSciNet  Google Scholar 

  63. Markwick-Kemper, F., Gallagher, S. C., Hines, D. C. & Bouwman, J. Dust in the wind: crystalline silicates, corundum, and periclase in PG 2112+059. Astrophys. J. 668, L107–L110 (2007).

    ADS  Google Scholar 

  64. Shao, Z., Jiang, B. W. & Li, A. On the optical-to-silicate extinction ratio as a probe of the dust size in active galactic nuclei. Astrophys. J. 840, 27 (2017).

    ADS  Google Scholar 

  65. Li, M. P., Shi, Q. J. & Li, A. On the anomalous silicate emission features of active galactic nuclei: a possible interpretation based on porous dust. Mon. Not. R. Astron. Soc. 391, L49–L53 (2008).

    ADS  Google Scholar 

  66. Smith, H. A. et al. Anomalous silicate dust emission in the type 1 liner nucleus of M81. Astrophys. J. 716, 490–503 (2010).

    ADS  Google Scholar 

  67. Pope, A. et al. Mid-infrared spectral diagnosis of submillimeter galaxies. Astrophys. J. 675, 1171–1193 (2008).

    ADS  Google Scholar 

  68. Yan, L. et al. Spitzer mid-infrared spectroscopy of infrared luminous galaxies at z ~ 2. I. The spectra. Astrophys. J. 658, 778–793 (2007).

    ADS  Google Scholar 

  69. Sajina, A., Yan, L., Lacy, M. & Huynh, M. Discovery of radio jets in z ~ 2 ultraluminous infrared galaxies with deep 9.7 μm silicate absorption. Astrophys. J. 667, L17–L20 (2007).

    ADS  Google Scholar 

  70. Sajina, A. et al. Spitzer mid-infrared spectroscopy of infrared luminous galaxies at z ~ 2. III. Far-IR to radio properties and optical spectral diagnostics. Astrophys. J. 683, 659–682 (2008).

    ADS  Google Scholar 

  71. Fadda, D. et al. Ultra-deep mid-infrared spectroscopy of luminous infrared galaxies at z ~ 1 and z ~ 2. Astrophys. J. 719, 425–450 (2010).

    ADS  Google Scholar 

  72. Hernán-Caballero, A. et al. Mid-infrared spectroscopy of infrared-luminous galaxies at z ~ 0.5–3. Mon. Not. R. Astron. Soc. 395, 1695–1722 (2009).

    ADS  Google Scholar 

  73. Dasyra, K. M. et al. The ~0.9 mJy sample: a mid-infrared spectroscopic catalog of 150 infrared-luminous, 24 μm selected galaxies at 0.3 < z < 3.5. Astrophys. J. 701, 1123–1146 (2009).

    ADS  Google Scholar 

  74. Sajina, A. et al. Detections of water ice, hydrocarbons, and 3.3 μm PAH in z ~ 2 ULIRGs. Astrophys. J. 703, 270–284 (2009).

    ADS  Google Scholar 

  75. Feltre, A. et al. The roles of star formation and AGN activity of IRS sources in the HerMES fields. Mon. Not. R. Astron. Soc. 434, 2426–2437 (2013).

    ADS  Google Scholar 

  76. Laurent, O. et al. Mid-infrared diagnostics to distinguish AGNs from starbursts. Astron. Astrophys. 359, 887–899 (2000).

    ADS  Google Scholar 

  77. Haas, M. et al. Mid-infrared selection of AGN. Astron. Astrophys. 419, L49–L53 (2004).

    ADS  Google Scholar 

  78. Lacy, M. et al. Obscured and unobscured active galactic nuclei in the Spitzer Space Telescope First Look Survey. Astrophys. J. Suppl. Series 154, 166–169 (2004).

    ADS  Google Scholar 

  79. Stern, D. et al. Mid-infrared selection of active galaxies. Astrophys. J. 631, 163–168 (2005).

    ADS  Google Scholar 

  80. Sajina, A., Lacy, M. & Scott, D. Simulating the Spitzer mid-infrared color–color diagrams. Astrophys. J. 621, 256–268 (2005).

    ADS  Google Scholar 

  81. Donley, J. L. et al. Identifying luminous active galactic nuclei in deep surveys: revised IRAC selection criteria. Astrophys. J. 748, 142 (2012).

    ADS  Google Scholar 

  82. Chen, C.-T. J. et al. The XMM-SERVS survey: new XMM-Newton point-source catalogue for the XMM-LSS field. Mon. Not. R. Astron. Soc. 478, 2132–2163 (2018).

    ADS  Google Scholar 

  83. Lacy, M. et al. The Spitzer Mid-Infrared AGN Survey. II. The demographics and cosmic evolution of the AGN population. Astrophys. J. 802, 102 (2015).

    ADS  Google Scholar 

  84. Lonsdale, C. J. et al. SWIRE: the SIRTF Wide-Area Infrared Extragalactic Survey. Publ. Astron. Soc. Pacif. 115, 897–927 (2003).

    ADS  Google Scholar 

  85. Kochanek, C. S. et al. AGES: the AGN and Galaxy Evolution Survey. Astrophys. J. Suppl. Series 200, 8 (2012).

    ADS  Google Scholar 

  86. Lacy, M. et al. The Infrared Array Camera component of the Spitzer Space Telescope Extragalactic First Look Survey. Astrophys. J. Suppl. Series 161, 41–52 (2005).

    ADS  Google Scholar 

  87. Fadda, D. et al. The Spitzer Space Telescope Extragalactic First Look Survey: 24 μm data reduction, catalog, and source identification. Astron. J. 131, 2859–2876 (2006).

    ADS  Google Scholar 

  88. Sanders, D. B. et al. S-COSMOS: the Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: survey strategy and first analysis. Astrophys. J. Suppl. Series 172, 86–98 (2007).

    ADS  Google Scholar 

  89. Assef, R. J. et al. Low-resolution spectral templates for active galactic nuclei and galaxies from 0.03 to 30 μm. Astrophys. J. 713, 970–985 (2010).

    ADS  Google Scholar 

  90. Messias, H., Afonso, J. M., Salvato, M., Mobasher, B. & Hopkins, A. M. The dependency of AGN infrared colour-selection on source luminosity and obscuration. An observational perspective in CDFS and COSMOS. Astron. Astrophys. 562, A144 (2014).

    ADS  Google Scholar 

  91. Juneau, S. et al. Widespread and hidden active galactic nuclei in star-forming galaxies at redshift >0.3. Astrophys. J. 764, 176 (2013).

    ADS  Google Scholar 

  92. Lacy, M. et al. Optical spectroscopy and X-ray detections of a sample of quasars and active galactic nuclei selected in the mid-infrared from two Spitzer Space Telescope wide-area surveys. Astron. J. 133, 186–205 (2007).

    ADS  Google Scholar 

  93. Lacy, M. et al. The Spitzer Mid-Infrared Active Galactic Nucleus Survey. I. Optical and near-infrared spectroscopy of obscured candidates and normal active galactic nuclei selected in the mid-infrared. Astrophys. J. Suppl. Series 208, 24 (2013).

    ADS  Google Scholar 

  94. Rawlings, S., Lacy, M., Sivia, D. S. & Eales, S. A. The reddened quasar 3C 22 and its implications. Mon. Not. R. Astron. Soc. 274, 428–434 (1995).

    ADS  Google Scholar 

  95. Brotherton, M. S., Wills, B. J., Dey, A., van Breugel, W. & Antonucci, R. Spectropolarimetry of 3CR 68.1: a highly inclined quasar. Astrophys. J. 501, 110–118 (1998).

    ADS  Google Scholar 

  96. Glikman, E. et al. FIRST-2Mass sources below the APM detection threshold: a population of highly reddened quasars. Astrophys. J. 607, 60–75 (2004).

    ADS  Google Scholar 

  97. Urrutia, T., Lacy, M., Gregg, M. D. & Becker, R. H. Chandra observations of 12 luminous red quasars. Astrophys. J. 627, 75–82 (2005).

    ADS  Google Scholar 

  98. Richards, G. T. et al. Eight-dimensional mid-infrared/optical Bayesian quasar selection. Astron. J. 137, 3884–3899 (2009).

    ADS  Google Scholar 

  99. Richards, G. T. et al. Bayesian high-redshift quasar classification from optical and mid-IR photometry. Astrophys. J. Suppl. Series 219, 39 (2015).

    ADS  Google Scholar 

  100. Timlin, J. D. et al. The clustering of high-redshift (2.9 ≤ z ≤ 5.1) quasars in SDSS stripe 82. Astrophys. J. 859, 20 (2018).

    ADS  Google Scholar 

  101. Glikman, E. et al. Luminous WISE-selected obscured, unobscured, and red quasars in stripe 82. Astrophys. J. 861, 37 (2018).

    ADS  Google Scholar 

  102. Jarvis, M. J. et al. On the redshift cut-off for steep-spectrum radio sources. Mon. Not. R. Astron. Soc. 327, 907–917 (2001).

    ADS  Google Scholar 

  103. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982).

    ADS  Google Scholar 

  104. Elvis, M., Risaliti, G. & Zamorani, G. Most supermassive black holes must be rapidly rotating. Astrophys. J. 565, L75–L77 (2002).

    ADS  Google Scholar 

  105. Shankar, F. et al. Probing black hole accretion tracks, scaling relations and radiative efficiencies from stacked X-ray active galactic nuclei. Mon. Not. R. Astron. Soc. 493, 1500–1511 (2019).

    ADS  Google Scholar 

  106. Gorjian, V. et al. The mid-infrared properties of X-ray sources. Astrophys. J. 679, 1040–1046 (2008).

    ADS  Google Scholar 

  107. Del Moro, A. et al. Mid-infrared luminous quasars in the GOODS-Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2. Mon. Not. R. Astron. Soc. 456, 2105–2125 (2016).

    ADS  Google Scholar 

  108. Buchner, J. et al. Obscuration-dependent evolution of active galactic nuclei. Astrophys. J. 802, 89 (2015).

    ADS  Google Scholar 

  109. Zakamska, N. L., Gómez, L., Strauss, M. A. & Krolik, J. H. Mid-infrared spectra of optically-selected type 2 quasars. Astron. J. 136, 1607–1622 (2008).

    ADS  Google Scholar 

  110. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Series 166, 470–497 (2006).

    ADS  Google Scholar 

  111. Willner, S. P. et al. Mid-infrared identification of 6 cm radio-source counterparts in the extended Groth strip. Astron. J. 132, 2159–2170 (2006).

    ADS  Google Scholar 

  112. Cotton, W. D. et al. The angular size distribution of μJy radio sources. Astrophys. J. 856, 67 (2018).

    ADS  Google Scholar 

  113. Luchsinger, K. M. et al. The host galaxies of micro-Jansky radio sources. Astron. J. 150, 87 (2015).

    ADS  Google Scholar 

  114. Ocran, E. F., Taylor, A. R., Vaccari, M. & Green, D. A. The nature of the faint low-frequency radio source population. Mon. Not. R. Astron. Soc. 468, 1156–1168 (2017).

    ADS  Google Scholar 

  115. Elitzur, M. & Shlosman, I. The AGN-obscuring torus: the end of the ‘doughnut’ paradigm? Astrophys. J. 648, L101–L104 (2006).

    ADS  Google Scholar 

  116. Hönig, S. F. & Beckert, T. Active galactic nuclei dust tori at low and high luminosities. Mon. Not. R. Astron. Soc. 380, 1172–1176 (2007).

    ADS  Google Scholar 

  117. Elitzur, M. & Ho, L. C. On the disappearance of the broad-line region in low-luminosity active galactic nuclei. Astrophys. J. 701, L91–L94 (2009).

    ADS  Google Scholar 

  118. Elitzur, M. & Netzer, H. Disc outflows and high-luminosity true type 2 AGN. Mon. Not. R. Astron. Soc. 459, 585–594 (2016).

    ADS  Google Scholar 

  119. González-Martín, O. et al. Hints on the gradual resizing of the torus in AGNs through decomposition of Spitzer/IRS spectra. Astrophys. J. 841, 37 (2017).

    ADS  Google Scholar 

  120. Boyle, B. J. & Terlevich, R. J. The cosmological evolution of the QSO luminosity density and of the star formation rate. Mon. Not. R. Astron. Soc. 293, L49–L51 (1998).

    ADS  Google Scholar 

  121. Shankar, F., Weinberg, D. H. & Miralda-Escudé, J. Self-consistent models of the AGN and black hole populations: duty cycles, accretion rates, and the mean radiative efficiency. Astrophys. J. 690, 20–41 (2009).

    ADS  Google Scholar 

  122. Polimera, M., Sarajedini, V., Ashby, M. L. N., Willner, S. P. & Fazio, G. G. Morphologies of mid-IR variability-selected AGN host galaxies. Mon. Not. R. Astron. Soc. 476, 1111–1119 (2018).

    ADS  Google Scholar 

  123. Kocevski, D. D. et al. Are Compton-thick AGNs the missing link between mergers and black hole growth? Astrophys. J. 814, 104 (2015).

    ADS  Google Scholar 

  124. Donley, J. L. et al. Evidence for merger-driven growth in luminous, high-z, obscured AGNs in the CANDELS/COSMOS Field. Astrophys. J. 853, 63 (2018).

    ADS  Google Scholar 

  125. Kocevski, D. D. et al. CANDELS: constraining the AGN-merger connection with host morphologies at z ~ 2. Astrophys. J. 744, 148 (2012).

    ADS  Google Scholar 

  126. Sabater, J., Best, P. N. & Heckman, T. M. Triggering optical AGN: the need for cold gas, and the indirect roles of galaxy environment and interactions. Mon. Not. R. Astron. Soc. 447, 110–116 (2015).

    ADS  Google Scholar 

  127. Villforth, C. et al. Host galaxies of luminous z ~ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities. Mon. Not. R. Astron. Soc. 466, 812–830 (2017).

    ADS  Google Scholar 

  128. Mor, R., Netzer, H. & Elitzur, M. Dusty structure around type-I active galactic nuclei: clumpy torus narrow-line region and near-nucleus hot dust. Astrophys. J. 705, 298–313 (2009).

    ADS  Google Scholar 

  129. Treister, E., Schawinski, K., Urry, C. M. & Simmons, B. D. Major galaxy mergers only trigger the most luminous active galactic nuclei. Astrophys. J. 758, L39 (2012).

    ADS  Google Scholar 

  130. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Google Scholar 

  131. Urrutia, T. et al. Spitzer observations of young red quasars. Astrophys. J. 757, 125 (2012).

    ADS  Google Scholar 

  132. Fu, H. et al. Decomposing star formation and active galactic nucleus with Spitzer mid-infrared spectra: luminosity functions and co-evolution. Astrophys. J. 722, 653–667 (2010).

    ADS  Google Scholar 

  133. Ogle, P., Antonucci, R., Appleton, P. N. & Whysong, D. Shocked molecular hydrogen in the 3C 326 radio galaxy system. Astrophys. J. 668, 699–707 (2007).

    ADS  Google Scholar 

  134. Lanz, L. et al. Jet–ISM interaction in the radio galaxy 3C 293: jet-driven shocks heat ISM to power X-ray and molecular H2 emission. Astrophys. J. 801, 17 (2015).

    ADS  Google Scholar 

  135. Guillard, P. et al. Strong molecular hydrogen emission and kinematics of the multiphase gas in radio galaxies with fast jet-driven outflows. Astrophys. J. 747, 95 (2012).

    ADS  Google Scholar 

  136. Ogle, P. et al. Jet-powered molecular hydrogen emission from radio galaxies. Astrophys. J. 724, 1193–1217 (2010).

    ADS  Google Scholar 

  137. Stern, D. et al. Mid-infrared selection of active galactic nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected active galactic nuclei in COSMOS. Astrophys. J. 753, 30 (2012).

    ADS  Google Scholar 

  138. Assef, R. J. et al. The WISE AGN Catalog. Astrophys. J. Suppl. Series 234, 23 (2018).

    ADS  Google Scholar 

  139. Assef, R. J. et al. Half of the most luminous quasars may be obscured: investigating the nature of WISE-selected hot dust-obscured galaxies. Astrophys. J. 804, 27 (2015).

    ADS  Google Scholar 

  140. Lonsdale, C. J. et al. Radio jet feedback and star formation in heavily obscured, hyperluminous quasars at redshifts ~0.5–3. I. ALMA observations. Astrophys. J. 813, 45 (2015).

    ADS  Google Scholar 

  141. Huang, T.-C., Goto, T., Hashimoto, T., Oi, N. & Matsuhara, H. An extinction-free AGN selection by 18-band SED fitting in mid-infrared in the AKARI NEP deep field. Mon. Not. R. Astron. Soc. 471, 4239–4248 (2017).

    ADS  Google Scholar 

  142. Kim, J. H. et al. The interplay between active galactic nuclei and star formation activities of type 1 active galactic nuclei probed by polycyclic aromatic hydrocarbon 3.3 μm emission feature with AKARI. Publ. Astron. Soc. Jpn 71, 25 (2019).

    ADS  Google Scholar 

  143. Oyabu, S. et al. AKARI near- and mid-infrared spectroscopy of APM 08279+5255 at z = 3.91. Astrophys. J. 697, 452–457 (2009).

    ADS  Google Scholar 

  144. Im, M. et al. AKARI spectroscopy of quasars at 2.5–5 μm. Publ. Korean Astron. Soc. 32, 163–167 (2017).

    ADS  Google Scholar 

  145. García-Burillo, S. et al. ALMA resolves the torus of NGC 1068: continuum and molecular line emission. Astrophys. J. 823, L12 (2016).

    ADS  Google Scholar 

  146. Combes, F. et al. ALMA observations of molecular tori around massive black holes. Astron. Astrophys. 623, A79 (2019).

    Google Scholar 

  147. Impellizzeri, C. M. V. et al. Counter-rotation and high velocity outflow in the parsec-scale molecular torus of NGC 1068. Astrophys. J. 884, L28 (2019).

    ADS  Google Scholar 

  148. Hopkins, P. F., Hayward, C. C., Narayanan, D. & Hernquist, L. The origins of active galactic nuclei obscuration: the ‘torus’ as a dynamical, unstable driver of accretion. Mon. Not. R. Astron. Soc. 420, 320–339 (2012).

    ADS  Google Scholar 

  149. Rosario, D. J. et al. The mean star-forming properties of QSO host galaxies. Astron. Astrophys. 560, A72 (2013).

    Google Scholar 

  150. Mullaney, J. R. et al. ALMA and Herschel reveal that X-ray-selected AGN and main-sequence galaxies have different star formation rate distributions. Mon. Not. R. Astron. Soc. 453, L83–L87 (2015).

    ADS  Google Scholar 

  151. Chen, C.-T. J. et al. Connection between obscuration and star formation in luminous quasars. Astrophys. J. 802, 50 (2015).

    ADS  Google Scholar 

  152. Kirkpatrick, A. et al. The AGN-star formation connection: future prospects with JWST. Astrophys. J. 849, 111 (2017).

    ADS  Google Scholar 

  153. Korngut, P. M. et al. SPHEREx: an all-sky NIR spectral survey. Proc. Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 106981U (2018).

  154. Roelfsema, P. R. et al. SPICA—a large cryogenic infrared space telescope: unveiling the obscured Universe. Publ. Astron. Soc. Austr. 35, e030 (2018).

    ADS  Google Scholar 

  155. Leisawitz, D. et al. The Origins Space Telescope: mission concept overview. Proc. Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 1069815 (2018).

  156. Brandl, B. R. et al. METIS: the thermal infrared instrument for the E-ELT. Ground-based and Airborne Instrumentation for Astronomy IV, 84461M (2012).

  157. Yoshii, Y. et al. The University of Tokyo Atacama Observatory 6.5m telescope: project overview and current status. Ground-based and Airborne Telescopes VI, 99060R (2016).

  158. Nyland, K. et al. Revolutionizing our understanding of AGN feedback and its importance to galaxy evolution in the era of the next generation Very Large Array. Astrophys. J. 859, 23 (2018).

    ADS  Google Scholar 

  159. Cleeves, I. et al. Realizing the unique potential of ALMA to probe the gas reservoir of planet formation. Bull. Am. Astron. Soc. 51, 81 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank the dedicated staff at the Spitzer Science Center and the members of the Instrument Teams who made Spitzer successful. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the planning and writing of this article.

Corresponding author

Correspondence to Mark Lacy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacy, M., Sajina, A. Active galactic nuclei as seen by the Spitzer Space Telescope. Nat Astron 4, 352–363 (2020). https://doi.org/10.1038/s41550-020-1071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1071-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing