Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings

Abstract

Conformational heterogeneity is emerging as a defining characteristic of enzyme function. However, understanding the role of protein conformations requires their thermodynamic and kinetic characterization at the single-molecule level, which remains extremely challenging. Here we report the ligand-induced conformational changes of dihydrofolate reductase (DHFR) by measuring the modulation of the nanopore currents. The long observation time of the electrical recordings enabled the detection of rare conformational transitions hidden in ensemble measurements. We show that DHFR exists in at least four ground-state configurations or conformers with different affinities for its ligands. Unliganded DHFR adopted low-affinity conformers, whereas the binding of substrates promoted the switch to the high-affinity conformer. Conversion between the conformers was accelerated by molecules that stabilized the transition state of DHFR, which suggests that the reaction lowers the energy barrier for conformer exchange and thus facilitates product release. This mechanism might be a general feature in enzymatic reactions affected by product inhibition or when the release of products is the rate-limiting step.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DHFR inside the ClyA-AS nanopore.
Fig. 2: Binding of NADPH and folate to DHFRtag reveals the different DHFR conformers.
Fig. 3: DHFR exist in four different DHFR conformers.
Fig. 4: DHFR conformer distribution depends on the reaction conditions.
Fig. 5: Exchange of conformers at the transition state.

Similar content being viewed by others

Data availability

Raw data are provided in Supplementary Data 1. All other data are available from the authors upon reasonable request.

References

  1. Blake, C. C. et al. Crystallographic studies of the activity of hen egg-white lysozyme. Proc. R. Soc. Lond. Ser. B 167, 378–388 (1967).

    CAS  Google Scholar 

  2. Ma, B., Kumar, S., Tsai, C. J., Hu, Z. & Nussinov, R. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity? J. Theor. Biol. 203, 383–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Hammes-Schiffer, S. & Klinman, J. Emerging concepts about the role of protein motion in enzyme catalysis. Acc. Chem. Res. 48, 899–899 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Lella, M. & Mahalakshmi, R. Metamorphic proteins: emergence of dual protein folds from one primary sequence. Biochemistry 56, 2971–2984 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Murzin, A. G. Biochemistry: metamorphic proteins. Science 320, 1725–1726 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Roca, M., Liu, H., Messer, B. & Warshel, A. On the relationship between thermal stability and catalytic power of enzymes. Biochemistry 46, 15076–15088 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Závodszky, P. et al. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl Acad. Sci. USA 95, 7406–7411 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maglia, G., Javed, M. H. & Allemann, R. K. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Biochem. J. 374, 529–535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wrba, A., Schweiger, A., Schultes, V., Jaenicke, R. & Zavodszky, P. Extremely thermostable d-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry 29, 7584–7592 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Teilum, K., Olsen, J. G. & Kragelund, B. B. Protein stability, flexibility and function. Biochim. Biophys. Acta 1814, 969–976 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Jaenicke, R. Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc. Natl Acad. Sci. USA 97, 2962–2964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sawaya, M. R. & Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586–603 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Osborne, M. J., Schnell, J., Benkovic, S. J., Dyson, H. J. & Wright, P. E. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Fierke, C. A., Johnson, K. A. & Benkovic, S. J. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry 26, 4085–4092 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Z., Rajagopalan, P. T. R., Selzer, T., Benkovic, S. J. & Hammes, G. G. Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Proc. Natl Acad. Sci. USA 101, 2764–2769 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cameron, C. E. & Benkovic, S. J. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Biochemistry 36, 15792–15800 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Osborne, M. J., Venkitakrishnan, R. P., Dyson, H. J. & Wright, P. E. Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes. Protein Sci. 12, 2230–2238 (2009).

    Article  CAS  Google Scholar 

  18. Wan, Q. et al. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Proc. Natl Acad. Sci. USA 111, 18225–18230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gundersen, L. E. et al. Dihydrofolate reductase from amethopterin-resistant Lactobacillus casei. Biochemistry 11, 1018–1023 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Huennekens, F. M. et al. Dihydrofolate reductases: structural and mechanistic aspects. Ann. NY Acad. Sci 186, 85–99 (1971).

    Article  CAS  PubMed  Google Scholar 

  21. Perkins, J. P., Hillcoat, B. L. & Bertino, J. R. Dihydrofolate reductase from a resistant subline of the L1210 lymphoma. Purification and properties. J. Biol. Chem. 242, 4771–4776 (1967).

    CAS  PubMed  Google Scholar 

  22. Dunn, S. M., Batchelor, J. G. & King, R. W. Kinetics of ligand binding to dihydrofolate reductase: binary complex formation with NADPH and coenzyme analogues. Biochemistry 17, 2356–2364 (1978).

    Article  CAS  PubMed  Google Scholar 

  23. Dunn, S. M. & King, R. W. Kinetics of ternary complex formation between dihydrofolate reductase, coenzyme, and inhibitors. Biochemistry 19, 766–773 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Cayley, P. J., Dunn, S. M. J. & King, R. W. Kinetics of substrate, coenzyme, and inhibitor binding to Escherichia coli dihydrofolate reductase. Biochemistry 20, 874–879 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Baccanari, D. P., Averett, D., Briggs, C. & Burchall, J. Escherichia coli dihydrofolate reductase: isolation and characterization of two isozymes. Biochemistry 16, 3566–3572 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, J. T., Taira, K., Tu, C. P. D. & Benkovic, S. J. Probing the functional role of phenylalanine-31 of Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Biochemistry 26, 4093–4100 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Falzone, C. J., Wright, P. E. & Benkovic, S. J. Evidence for two interconverting protein isomers in the methotrexate complex of dihydrofolate reductase from Escherichia coli. Biochemistry 30, 2184–2191 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Li, L., Falzone, C. J., Wright, P. E. & Benkovic, S. J. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization. Biochemistry 31, 7826–7833 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Cheung, H. T., Birdsall, B. & Feeney, J. 13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with methotrexate and with folic acid. FEBS Lett. 312, 147–151 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Appleman, J. R., Howell, E. E., Kraut, J. & Blakley, R. L. Role of aspartate 27 of dihydrofolate reductase from Escherichia coli in interconversion of active and inactive enzyme conformers and binding of NADPH. J. Biol. Chem. 265, 5579–5584 (1990).

    CAS  PubMed  Google Scholar 

  31. Schnell, J. R., Dyson, H. J. & Wright, P. E. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct. 33, 119–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Shin, S. H., Luchian, T., Cheley, S., Braha, O. & Bayley, H. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 41, 3707–3709 (2002).

    Article  CAS  Google Scholar 

  33. Lee, J. et al. Semisynthetic nanoreactor for reversible single-molecule covalent chemistry. ACS Nano 10, 8843–8850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramsay, W. J., Bell, N. A. W., Qing, Y. & Bayley, H. Single-molecule observation of the intermediates in a catalytic cycle. J. Am. Chem. Soc. 140, 17538–17546 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Borsley, S. & Cockroft, S. L. In situ synthetic functionalization of a transmembrane protein nanopore. ACS Nano 12, 786–794 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, S., Li, W. W., Rotem, D., Mikhailova, E. & Bayley, H. A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nat. Chem. 2, 921–928 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Steffensen, M. B., Rotem, D. & Bayley, H. Single-molecule analysis of chirality in a multicomponent reaction network. Nat. Chem. 6, 603–607 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Haugland, M. M., Borsley, S., Cairns-Gibson, D. F., Elmi, A. & Cockroft, S. L. Synthetically diversified protein nanopores: resolving click reaction mechanisms. ACS Nano 13, 4101–4110 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Ho, C.-W. et al. Engineering a nanopore with co-chaperonin function. Sci. Adv. 1, e1500905 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Craig, J. M. et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl Acad. Sci. USA 114, 11932–11937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hurt, N., Wang, H., Akeson, M. & Lieberman, K. R. Specific nucleotide binding and rebinding to individual DNA polymerase complexes captured on a nanopore. J. Am. Chem. Soc. 131, 3772–3778 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheley, S., Xie, H. & Bayley, H. A genetically encoded pore for the stochastic detection of a protein kinase. ChemBioChem 7, 1923–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Howorka, S., Nam, J., Bayley, H. & Kahne, D. Stochastic detection of monovalent and bivalent protein–ligand interactions. Angew. Chem. Int. Ed. 43, 842–846 (2004).

    Article  CAS  Google Scholar 

  46. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Q., de Zoysa, R. S. S., Wang, D., Jayawardhana, D. A. & Guan, X. Real-time monitoring of peptide cleavage using a nanopore probe. J. Am. Chem. Soc. 131, 6324–6325 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Lieberman, K. R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan, C. S., Riedl, J., Fleming, A. M., Burrows, C. J. & White, H. S. Kinetics of T3-DNA ligase-catalyzed phosphodiester bond formation measured using the α-hemolysin nanopore. ACS Nano 10, 11127–11135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fennouri, A. et al. Kinetics of enzymatic degradation of high molecular weight polysaccharides through a nanopore: experiments and data-modeling. Anal. Chem. 85, 8488–8492 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Soskine, M., Biesemans, A., De Maeyer, M. & Maglia, G. Tuning the size and properties of ClyA nanopores assisted by directed evolution. J. Am. Chem. Soc. 135, 13456–13463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soskine, M., Biesemans, A. & Maglia, G. Single-molecule analyte recognition with ClyA nanopores equipped with internal protein adaptors. J. Am. Chem. Soc. 137, 5793–5797 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Meervelt, V. et al. Real-time conformational changes and controlled orientation of native proteins inside a protein nanoreactor. J. Am. Chem. Soc. 139, 18640–18646 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Biesemans, A., Soskine, M. & Maglia, G. A protein rotaxane controls the translocation of proteins across a ClyA nanopore. Nano Lett. 15, 6076–6081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Van Meervelt, V., Soskine, M. & Maglia, G. Detection of two isomeric binding configurations in a protein–aptamer complex with a biological nanopore. ACS Nano 8, 12826–12835 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Galenkamp, N. S., Soskine, M., Hermans, J., Wloka, C. & Maglia, G. Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nat. Commun. 9, 4085 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Waduge, P. et al. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 11, 5706–5716 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Hu, R. et al. Differential enzyme flexibility probed using solid-state nanopores. ACS Nano 12, 4494–4502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willems, K. et al. Engineering and modeling the electrophoretic trapping of a single protein inside a nanopore. ACS Nano 13, 9980–9992 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Loveridge, E. J. et al. Reduction of folate by dihydrofolate reductase from Thermotoga maritima. Biochemistry 56, 1879–1886 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Penner, M. H. & Frieden, C. Substrate-induced hysteresis in the activity of Escherichia coli dihydrofolate reductase. J. Biol. Chem. 260, 5366–5369 (1985).

    CAS  PubMed  Google Scholar 

  63. Baccanari, D. P. & Joyner, S. S. Dihydrofolate reductase hysteresis and its effect on inhibitor binding analyses. Biochemistry 20, 1710–1716 (1981).

    Article  CAS  PubMed  Google Scholar 

  64. Newbold, P. C. & Harding, N. G. Affinity chromatography of dihydrofolate reductase. Biochem. J. 124, 1–12 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, J. W., Morrison, J. F. & Duggleby, R. G. Methotrexate, a high-affinity pseudosubstrate of dihydrofolate reductase. Biochemistry 18, 2567–2573 (1979).

    Article  CAS  PubMed  Google Scholar 

  66. Williams, J. W. & Morrison, J. F. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63, 437–467 (1979).

    Article  CAS  PubMed  Google Scholar 

  67. Pattishall, K. H., Burchall, J. J. & Harvey, R. J. Interconvertible forms of Escherichia coli dihydrofolate reductase with different affinities for analogs of dihydrofolate. J. Biol. Chem. 251, 7011–7020 (1976).

    CAS  PubMed  Google Scholar 

  68. Bystroff, C., Oatley, S. J. & Kraut, J. Crystal structures of Escherichia coli dihydrofolate reductase: the NADP+ holoenzyme and the folate·NADP+ ternary complex. Substrate binding and a model for the transition state. Biochemistry 29, 3263–3277 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Bystroff, C. & Kraut, J. Crystal structure of unliganded Escherichia coli dihydrofolate reductase. Ligand-induced conformational changes and cooperativity in binding. Biochemistry 30, 2227–2239 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Matthews, D. et al. Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate. Science 197, 452–455 (1977).

    Article  CAS  PubMed  Google Scholar 

  71. Rajagopalan, P. T. R. et al. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc. Natl Acad. Sci. USA 99, 13481–13486 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Biesemans, A., Soskine, M. & Maglia, G. A protein rotaxane controls the translocation of proteins across a ClyA nanopore. Nano Lett. 15, 6076–6081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Oyen, D. et al. Defining the structural basis for allosteric product release from E. coli dihydrofolate reductase using NMR relaxation dispersion. J. Am. Chem. Soc. 139, 11233–11240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Proc. Natl Acad. Sci. USA 107, 1373–1378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lienhard, G. E. Enzymatic catalysis and transition-state theory. Science 180, 149–154 (1973).

    Article  CAS  PubMed  Google Scholar 

  77. Hilvert, D. Critical analysis of antibody catalysis. Annu. Rev. Biochem. 69, 751–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Oyen, D., Fenwick, R. B., Stanfield, R. L., Dyson, H. J. & Wright, P. E. Cofactor-mediated conformational dynamics promote product release from Escherichia coli dihydrofolate reductase via an allosteric pathway. J. Am. Chem. Soc. 137, 9459–9468 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hillcoat, B. L., Nixon, P. F. & Blakley, R. L. Effect of substrate decomposition on the spectrophotometric assay of dihydrofolate reductase. Anal. Biochem. 21, 178–189 (1967).

    Article  CAS  PubMed  Google Scholar 

  80. Maglia, G., Heron, A. J., Stoddart, D., Japrung, D. & Bayley, H. Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol. 475, 591–623 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.B. is funded by a PhD grant from the Agency for Innovation by Science and Technology (IWT) Flanders. N.S.G. was funded by European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Contributions

N.S.G. performed the experiments and analysed the data presented in the manuscript. A.B. cloned the DNA and performed the preliminary electrophysiological experiments. N.S.G. and G.M. wrote the manuscript. G.M. supervised the project. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Giovanni Maglia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional results and discussion, extended materials and methods, Supplementary Figs. 1–8, Tables 1–5 and references.

Supplementary Data 1

A .zip file containing raw unfiltered traces used in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galenkamp, N.S., Biesemans, A. & Maglia, G. Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat. Chem. 12, 481–488 (2020). https://doi.org/10.1038/s41557-020-0437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0437-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing