Skip to main content
Log in

Md-Net: Multi-scale Dilated Convolution Network for CT Images Segmentation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Accurate CT image segmentation is of great importance to the clinical diagnosis. Due to the high similarity of gray values in CT image, the segmented areas are easily affected by their surroundings, which leads to the loss of semantic information. In this paper, we propose a multi-scale dilated convolution network (Md-Net) for CT image segmentation with superior segmentation performance compared with state-of-the-art methods. Specifically, our Md-Net utilizes the dilated convolutions with different sizes to form feature pyramids for extracting the semantic information. Moreover, we use a weighted Diceloss to accelerate the convergence in training process. Meanwhile, the bilinear interpolation and multiple convolutions are taken to reduce the computational cost. Experiment results show that our proposed Md-Net outperforms the representative medical image segmentation methods, including Unet, Unet++, MaskRcnn and CE-Net, in terms of sensitivity, accuracy and area under curve both on lung dataset and Bladder dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2009) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841

    Article  Google Scholar 

  2. Ronneberger O, Fischer P, Brox TN (2015) Convolutional networks for biomedical image segmentation. In: Paper presented at international conference on medical image computing and computer-assisted intervention

  3. Song TH, Sanchez V, EIDaly H, Rajpoot NM (2017) Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images. IEEE Trans Biomed Eng 64(12):2913

    Article  Google Scholar 

  4. Shen W, Zhou M, Yang F, Dong D, Yang C, Zang Y, Tian J (2016) Learning from experts: developing transferable deep features for patient-level lung cancer prediction. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 124–131

  5. Hu S, Hoffman EA, Reinhardt JM (2001) Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20(6):490

    Article  Google Scholar 

  6. Sluimer I, Schilham A, Prokop M, Van Ginneken B (2006) Computer analysis of computed tomography scans of the lung: a survey. IEEE Trans Med Imaging 25(4):385

    Article  Google Scholar 

  7. Prasad MN, Brown MS, Ahmad S, Abtin F, Allen J, da Costa I, Kim HJ, McNitt-Gray MF, Goldin JG (2008) Automatic segmentation of lung parenchyma in the presence of diseases based on curvature of ribs. Acad Radiol 15(9):1173

    Article  Google Scholar 

  8. Wang S, Zhou M, Liu Z, Liu Z, Gu D, Zang Y, Dong D, Gevaert O, Tian J (2017) Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal 40:172

    Article  Google Scholar 

  9. Makropoulos A, Gousias IS, Ledig C, Aljabar P, Serag A, Hajnal JV, Edwards AD, Counsell SJ, Rueckert D (2014) Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 33(9):1818

    Article  Google Scholar 

  10. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993

    Article  Google Scholar 

  11. Cherukuri V, Ssenyonga P, Warf BC, Kulkarni AV, Monga V, Schiff SJ (2017) Learning based segmentation of ct brain images: application to postoperative hydrocephalic scans. IEEE Trans Biomed Eng 65(8):1871

    Google Scholar 

  12. Huang M, Yang W, Wu Y, Jiang J, Chen W, Feng Q (2014) Brain tumor segmentation based on local independent projection-based classification. IEEE Trans Biomed Eng 61(10):2633

    Article  Google Scholar 

  13. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321

    Article  Google Scholar 

  14. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641

    Article  Google Scholar 

  15. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  16. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125

  17. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122

  18. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278

    Article  Google Scholar 

  19. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the advances in neural information processing systems, pp 1097–1105

  20. Yu J, Zhu C, Zhang J, Huang Q, Tao D (2019) Spatial pyramid-enhanced NetVLAD with weighted triplet loss for place recognition. IEEE Trans Neural Netw Learn Syst 31(2):661–674

    Article  Google Scholar 

  21. Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process 27(5):2420

    Article  MathSciNet  Google Scholar 

  22. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99

  23. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767

  24. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  25. Tian Z, Shen C, Chen H, He T (2019) Fcos: Fully convolutional one-stage object detection. In: Proceedings of the IEEE international conference on computer vision, pp 9627–9636

  26. Yu J, Li J, Yu Z, Huang Q (2019) Multimodal transformer with multi-view visual representation for image captioning. arXiv preprint arXiv:1905.07841

  27. Yu J, Tan M, Zhang H, Tao D, Rui Y (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2932058

    Article  Google Scholar 

  28. Hong C, Yu J, Zhang J, Jin X, Lee KH (2018) Multimodal face-pose estimation with multitask manifold deep learning. IEEE Trans Ind Inf 15(7):3952

    Article  Google Scholar 

  29. Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659

    Article  MathSciNet  Google Scholar 

  30. Hong C, Yu J, Chen X (2013) Image-based 3D human pose recovery with locality sensitive sparse retrieval. In: 2013 IEEE international conference on systems, man, and cybernetics (IEEE), pp 2103–2108

  31. Yu J, Tao D, Wang M, Rui Y (2014) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans Cybern 45(4):767

    Article  Google Scholar 

  32. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481

    Article  Google Scholar 

  33. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890

  34. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834

    Article  Google Scholar 

  35. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) CE-Net: context encoder network for 2D medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Berlin, pp 3–11

  36. Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J (2019) Ssd: single shot multibox detector. IEEE Trans Med Imaging 38(10):2281

    Article  Google Scholar 

  37. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Encoder–decoder with atrous separable convolution for semantic image segmentation. In: European conference on computer vision. Springer, Berlin, pp 21–37

  38. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Network in network. In: Proceedings of the European conference on computer vision (ECCV), pp 801–818

  39. Lin M, Chen Q, Yan S (2013) Going deeper with convolutions. arXiv preprint arXiv:1312.4400

  40. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Spatial transformer networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  41. Jaderberg M, Simonyan K, Zisserman A et al (2015) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the advances in neural information processing systems, pp 2017–2025

  42. Milletari F, Navab N, Ahmadi SA (2016) Unet++: a nested u-net architecture for medical image segmentation In: 2016 fourth international conference on 3D vision (3DV). IEEE, pp 565–571

  43. He K, Gkioxari G, Dollár P, Girshick R (2017) Deep residual learning for image recognition. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969

  44. He K, Zhang X, Ren S, Sun J (2016) Mask r-cnn. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 61762014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Sun, W., Song, S. et al. Md-Net: Multi-scale Dilated Convolution Network for CT Images Segmentation. Neural Process Lett 51, 2915–2927 (2020). https://doi.org/10.1007/s11063-020-10230-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10230-x

Keywords

Navigation