Skip to main content
Log in

Optimal Error Estimate of the Extended-WKB Approximation to the High Frequency Wave-Type Equation in the Semi-classical Regime

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For the Cauchy problem of the high frequency wave-type equation with Wentzel–Kramers–Brillouin (WKB) type initial data, the extended Wentzel–Kramers–Brillouin (E-WKB) ansatz is an asymptotically valid solution. This ansatz is globally defined and formulated as an integral of coherent states over the displaced Lagrangian submanifold. This paper proves the optimal first order error estimate of the proposed E-WKB ansatz in \(L^2\) norm for the wave-type equation in the semi-classical regime. The key ingredients in the proof are the moving frame technique developed in Zheng (Commun Math Sci 11:105–140, 2013) and the deep relations between the E-WKB analysis and the classical WKB analysis. Numerical results on the linear KdV equation verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bao, W., Jin, S., Markowich, P.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175(2), 487–524 (2002)

    Article  MathSciNet  Google Scholar 

  2. Chai, L., Lorin, E., Yang, X.: Frozen Gaussian approximation for the Dirac equation in semiclassical regime. SIAM J. Numer. Anal. 57(5), 2383–2412 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chai, L., Tong, P., Yang, X.: Frozen Gaussian approximation for 3-D seismic wave propagation. Geophys. J. Int. 208(1), 59–74 (2017)

    Article  Google Scholar 

  4. Cheng, L.T., Liu, H.L., Osher, S.: Computational high-frequency wave propagation in Schrödinger equations using the level set method, with applications to the semi-classical limit of Schrödinger equations. Commun. Math. Sci. 1(3), 593–621 (2003)

    Article  MathSciNet  Google Scholar 

  5. Delgadillo, R., Lu, J., Yang, X.: Frozen Gaussian approximation for high frequency wave propagation in periodic media. Asymptot. Anal. 110(3–4), 113–135 (2018)

    Article  MathSciNet  Google Scholar 

  6. Delgadillo, R., Lu, J., Yang, X.: Gauge-invariant frozen Gaussian approximation method for the Schrödinger equation in periodic media. SIAM J. Sci. Comput. 38(4), A2440–A2463 (2018)

    Article  Google Scholar 

  7. Engquist, B., Runborg, O.: Multi-phase computations in geometrical optics. J. Comput. Appl. Math. 74(1–2), 175–192 (1996)

    Article  MathSciNet  Google Scholar 

  8. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    Book  Google Scholar 

  9. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Hall, B.C.: Quantum Theory for Mathematicians. Springer, New York (2013)

    Book  Google Scholar 

  11. Heller, E.: Cellular dynamics: a new semiclassical approach to time-dependent quantum mechanics. J. Chem. Phys. 94(4), 2723–2729 (1991)

    Article  Google Scholar 

  12. Herman, M., Kluk, E.: A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91, 27–34 (1984)

    Article  Google Scholar 

  13. Hill, N.R.: Gaussian beam migration. Geophysics 55, 1416–1428 (1990)

    Article  Google Scholar 

  14. Hörmander, L.: On the existence and the regularity of solutions of linear pseudo-differential equations. Enseign. Math. 17, 99–163 (1971)

    MathSciNet  MATH  Google Scholar 

  15. Jin, S., Markowich, P., Sparber, C.: Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20, 121–209 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jin, S., Wei, D., Yin, D.: Gaussian beam methods for the Schrödinger equation with discontinuous potentials. J. Comput. Appl. Math. 265(1), 199–219 (2014)

    Article  MathSciNet  Google Scholar 

  17. Jin, S., Wu, H., Yang, X.: Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci. 6, 995–1020 (2008)

    Article  MathSciNet  Google Scholar 

  18. Jin, S., Wu, H., Yang, X.: Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime. Commun. Comput. Phys. 9(3), 668–687 (2011)

    Article  MathSciNet  Google Scholar 

  19. Karasev, M.V.: Connections on Lagrangian submanifolds and some quasiclassical approximation problems I. J. Sov. Math. 59(5), 1053–1062 (1992)

    Article  Google Scholar 

  20. Liu, H., Ralston, J.: Recovery of high frequency wave fields from phase space-based measurements. Multiscale Model. Sim. 8(2), 622–644 (2010)

    Article  MathSciNet  Google Scholar 

  21. Liu, H., Runborg, O., Tanushev, N.: Error estimates for Gaussian beam superpositions. Math. Comput. 82(282), 919–952 (2013)

    Article  MathSciNet  Google Scholar 

  22. Lu, J., Yang, X.: Frozen Gaussian approximation for high frequency wave propagation. Commun. Math. Sci. 9(3), 663–683 (2011)

    Article  MathSciNet  Google Scholar 

  23. Lu, J., Yang, X.: Convergence of frozen Gaussian approximation for high-frequency wave propagation. Commun. Pure Appl. Math. 65(6), 759–789 (2012)

    Article  MathSciNet  Google Scholar 

  24. Lu, J., Zhou, Z.: Improved sampling and validation of frozen Gaussian approximation with surface hopping algorithm for nonadiabatic dynamics. J. Chem. Phys. 145(12), 124109 (2016)

    Article  Google Scholar 

  25. Malenova, G., Motamed, M., Runborg, O., Tempone, R.: A sparse stochastic collocation technique for high-frequency wave propagation with uncertainty. SIAM/ASA J. Uncertain. Quantif. 4, 1084–1110 (2016)

    Article  MathSciNet  Google Scholar 

  26. Maslov, V.P., Fedoryuk, M.V.: Semi-classical Approximation in Quantum Mechanics. Reidel, Dordrecht (1982)

    Google Scholar 

  27. Motamed, M., Runborg, O.: Taylor expansion and discretization errors in Gaussian beam superposition. Wave Motion 47(7), 421–439 (2010)

    Article  MathSciNet  Google Scholar 

  28. Popov, M.M.: A new method of computation of wave fields using Gaussian beams. Wave Motion 4, 85–97 (1982)

    Article  MathSciNet  Google Scholar 

  29. Popov, M.M.: Ray Theory and Gaussian Beams for Geophysics. EDUFBA, Salvador (2002)

    Google Scholar 

  30. Ralston, J.: Gaussian beams and the propagation of singularities. Stud. Partial Differ. Equ. MAA Stud. Math. 23, 206–248 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Tanushev, N.M.: Superpositions and higher order Gaussian beams. Commun. Math. Sci. 6(2), 449–475 (2008)

    Article  MathSciNet  Google Scholar 

  32. Wu, H., Huang, Z., Jin, S., Yin, D.: Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci. 10, 1301–1315 (2012)

    Article  MathSciNet  Google Scholar 

  33. Zheng, C.: Global geometrical optics method. Commun. Math. Sci. 11(1), 105–140 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zheng, C.: Optimal error estimates for first-order Gaussian beam approximations to the Schrödinger equation. SIAM J. Numer. Anal. 52(6), 2905–2930 (2014)

    Article  MathSciNet  Google Scholar 

  35. Zheng, C., Hu, J.: Extended WKB analysis for the linear vectorial wave equation in the high-frequency regime. Commun. Math. Sci (accepted)

Download references

Acknowledgements

CZ’s work was supported by Natural Science Foundation of Xinjiang Autonomous Region under No. 2019D01C026, and National Natural Science Foundation of China (NSFC) with Grant No. 11771248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashun Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of (13) and (14)

A Proof of (13) and (14)

For (14), the action of the Weyl quantized operator H(W) has been analyzed in Theorem 4.2 of [35]. Moreover, we recall another useful formula in [35],

$$\begin{aligned} \int _{z\in \varLambda _t}(x-q){\mathcal {A}}_z\phi _{z,{\mathcal {S}}_z}^\epsilon d\nu _{z,t} =(-\, \mathrm {i}\epsilon ) \int _{z\in \varLambda _t} \mathrm {div}_{\varLambda _t} \left[ {\mathcal {A}}_z \varPi _{ \varLambda _t} \begin{pmatrix} - \mathrm {i}I\\ -I \end{pmatrix}\right] \phi _{z,{\mathcal {S}}_z}^\epsilon d\nu _{z,t}. \end{aligned}$$
(55)

Next, we prove Eq. (13). Since \(\phi _{z, {\mathcal {S}}_z}^ \varepsilon \) is a smooth function defined on \({{\bar{\varLambda }}}=\cup _t \varLambda _t\),

$$\begin{aligned} \phi _{z, {\mathcal {S}}_z}^ \varepsilon = (2 \pi \epsilon )^{\frac{N}{2}} \exp (\mathrm {i} {\mathcal {S}}_z/ \epsilon ) \exp (\mathrm {i} p^\dagger (x- q/2)/ \epsilon ) \exp (-\,(x-q)^2/2 \epsilon ), \end{aligned}$$

the following result is obvious,

$$\begin{aligned} d \phi _{z, {\mathcal {S}}_z}^ \varepsilon = \left[ \frac{ \mathrm {i}}{ \epsilon } (d {\mathcal {S}}_z + d(p^\dagger (x- q/2))) - d (x-q)^2/ 2\epsilon \right] \phi _{z, {\mathcal {S}}_z}^ \varepsilon . \end{aligned}$$

The term in the square bracket is a differential 1-form on \({\bar{\varLambda }}\) and can be contracted with the vector \(\dfrac{\partial }{\partial t}\). Thus, we derive

$$\begin{aligned} \begin{aligned} \partial _t \phi _{z, {\mathcal {S}}_z}^ \varepsilon =&\frac{ \mathrm {i}}{ \epsilon } \left[ \dot{{\mathcal {S}}_z} + \frac{\partial }{\partial t}(p^\dagger (x- q/2))) + \mathrm {i} \frac{\partial }{\partial t} (x-q)^2/ 2 \right] \phi _{z, {\mathcal {S}}_z}^ \varepsilon \\ =&\frac{ \mathrm {i}}{ \epsilon } \left[ \dot{{\mathcal {S}}_z} +[z,\dot{z}]/2 + (x-q)^\dagger (\dot{p}- \mathrm {i} \dot{q}) \right] \phi _{z, {\mathcal {S}}_z}^ \varepsilon . \end{aligned} \end{aligned}$$
(56)

By utilizing (12), Eq. (56) can be further simplified as

$$\begin{aligned} \partial _t \phi _{z, {\mathcal {S}}_z}^ \varepsilon = \frac{ \mathrm {i}}{ \epsilon } \left[ - H(z) + (x-q)^\dagger (\dot{p} - \mathrm {i} \dot{q})\right] \phi _{z, {\mathcal {S}}_z}^ \varepsilon . \end{aligned}$$
(57)

In order to compute Eq. (13), one first rewrites it into an equivalent form

$$\begin{aligned} - \mathrm {i}\epsilon \partial _t\int _{z\in \varLambda _t}{\mathcal {A}}_{z}\phi _{z, {\mathcal {S}}_{z}}^\epsilon d\nu _{z,t} = -\, \mathrm {i}\epsilon \int _{\varLambda _t} {\mathcal {L}}_t\left[ {\mathcal {A}}_{z}\phi _{z, {\mathcal {S}}_{z}}^\epsilon d\nu _{z,t} \right] , \end{aligned}$$
(58)

where \( {\mathcal {L}}_t\) denotes the Lie derivative corresponding to the vector field \( \dfrac{\partial }{\partial t}\). Actually, by invoking Eq. (57), we have

$$\begin{aligned} {\mathcal {L}}_t\left[ {\mathcal {A}}_{z} \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t} \right]&= ~\dot{ {\mathcal {A}}_z} \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t} + \frac{ \mathrm {i}}{ \epsilon } \left[ - H(z) + (x-q)^\dagger (\dot{p} - \mathrm {i} \dot{q})\right] {\mathcal {A}}_z \phi _{z, {\mathcal {S}}_z}^ \varepsilon d \nu _{z,t}\\&\quad + \mathrm{tr}[ \varPi _{ \varLambda _t} J \nabla ^2 H] {\mathcal {A}}_z\phi _{z, {\mathcal {S}}_z}^ \varepsilon d \nu _{z,t}. \end{aligned}$$

Thus, by employing (55), Eq. (58) becomes

$$\begin{aligned} - \mathrm {i}\epsilon \partial _t\int _{z\in \varLambda _t}{\mathcal {A}}_{z}\phi _{z, {\mathcal {S}}_{z}}^\epsilon d\nu _{z,t}&= \int _{z\in \varLambda _t}\left\{ -H(z){\mathcal {A}}_{z} +(-\, \mathrm {i}\epsilon )\left[ \dot{{\mathcal {A}}}_z +\mathrm {tr}[\varPi _{ \varLambda _t}J\nabla ^2 H(z)]{\mathcal {A}}_z\right] \right\} \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}\\&\quad +\int _{z\in \varLambda _t}(x-q)^\dagger ({\dot{p}}- \mathrm {i}{\dot{q}}){\mathcal {A}}_z\phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}\\&= \int _{z\in \varLambda _t}\left\{ -H(z){\mathcal {A}}_{z}+(-\, \mathrm {i}\epsilon )\left[ \dot{{\mathcal {A}}}_z +\mathrm {tr}[\varPi _{\varLambda _t}J\nabla ^2 H(z)]{\mathcal {A}}_z\right] \right\} \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}\\&\quad +(-\, \mathrm {i} \epsilon )\int _{z\in \varLambda _t} \mathrm{div}_{ \varLambda _t}\left[ \varPi _{ \varLambda _t} \begin{pmatrix} - \mathrm {i}I\\ -I\end{pmatrix} ({\dot{p}}- \mathrm {i}{\dot{q}}){\mathcal {A}}_z \right] \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}\\&= \int _{z\in \varLambda _t}\left\{ -H(z){\mathcal {A}}_{z}+(-\, \mathrm {i}\epsilon )\left[ \dot{{\mathcal {A}}}_z +\mathrm {tr}[\varPi _{\varLambda _t}J\nabla ^2 H(z)]{\mathcal {A}}_z\right] \right\} \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}\\&\quad +(-\, \mathrm {i} \epsilon )\int _{z\in \varLambda _t} \mathrm{div}_{ \varLambda _t}\left[ \varPi _{ \varLambda _t} \begin{pmatrix} - \mathrm {i}I\\ -I\end{pmatrix} \begin{pmatrix} - I&\quad - \mathrm {i}I \end{pmatrix} \begin{pmatrix} -\dot{p}\\ \dot{q}\end{pmatrix}{\mathcal {A}}_z \right] \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}\\&=\int _{z\in \varLambda _t}\left\{ - H(z){\mathcal {A}}_{z} +(-\, \mathrm {i}\epsilon )\left[ \dot{{\mathcal {A}}}_z +\mathrm {tr}[\varPi _{\varLambda _t}J\nabla ^2 H(z)] {\mathcal {A}}_z\right] \right\} \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}\\&\quad +(-\, \mathrm {i}\epsilon )\int _{z\in \varLambda _t}\mathrm {div}_{\varLambda _t}\left[ \varPi _{\varLambda _t}(\mathrm {i}I-J)\nabla H(z){\mathcal {A}}_z\right] \phi _{z, {\mathcal {S}}_z}^ \varepsilon d\nu _{z,t}. \end{aligned}$$

Thus, Eq. (13) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Hu, J. Optimal Error Estimate of the Extended-WKB Approximation to the High Frequency Wave-Type Equation in the Semi-classical Regime. J Sci Comput 83, 19 (2020). https://doi.org/10.1007/s10915-020-01208-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01208-x

Keywords

Navigation