Skip to main content
Log in

Development and application of electrochemical sensor of boron-doped diamond (BDD) modified by drop casting with tin hexacyanoferrate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work presents the development and characterization of an electrochemical sensor of tin hexacyanoferrate (SnHCF), produced from the modification by drop casting of the boron-doped diamond electrode (BDD), and its subsequent evaluation in the determination of dopamine (DP) in a synthetic saliva sample. The sensors, BDD-SnHCF and unmodified BDD, were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy, where the BDD-SnHCF presented higher roughness and lower resistance to electronic transfer. Raman spectroscopy and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the chemical composition and bonding of the SnHCF film. The electroactive area and the heterogeneous electron transfer rate constant (k0) presented higher values for BDD-SnHCF. Analytical curves were constructed, by batch injection analysis (BIA) with amperometric detection (BIA-AMP), and the slope obtained for BDD-SnHCF was significantly higher when compared with unmodified BDD. The detection limit for BDD-SnHCF (0.21 μmol L−1) presented a value sevenfold lower than unmodified BDD and good analytical frequency (72 h−1) obtained for the modified electrode. The determination of DP in saliva, as a proof-of-concept, achieved an excellent accuracy, reported by a recovery of (90% ± 8) in the sample. The results showed that SnHCF is an interesting alternative for the BDD drop casting modification, presenting a significant improvement in the electrochemical characteristics and analytical performance of DP in the determination by BIA-AMP compared with unmodified BDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization, and applications. Chem Mater 15:3046–3062

    Google Scholar 

  2. Razmi H, Taghvimi A (2010) Tin hexacyanoferrate nanoparticles based electrochemical sensor for selective and high sensitive determination of H2O2 in acidic media. Int J Electrochem Sci 5:751–762

    CAS  Google Scholar 

  3. Neff VD, Soc JE, June I (1978) Electrochemical oxidation and reduction of thin films of Prussian blue electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125:886–887

    CAS  Google Scholar 

  4. Araminaitė R, Garjonyte R, Malinauskas A (2010) Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrodes: a RDE study. J Solid State Electrochem 14:149–155

    Google Scholar 

  5. Li SJ, Du JM, Shi YF, Li WJ, Liu SR (2012) Functionalization of graphene with Prussian blue and its application for amperometric sensing of H 2O 2. J Solid State Electrochem 16:2235–2241

    CAS  Google Scholar 

  6. Pournaghi-Azar MH, Ahour F (2010) Electrochemical reduction and kinetics of hydrogen peroxide on the rotating disk palladium-plated aluminum electrode modified by prussian blue film as an improved electrocatalyst. J Solid State Electrochem 14:823–828

    CAS  Google Scholar 

  7. Pournaghi-Azar MH, Dastangoo H (2002) Electrochemical characteristics of an aluminum electrode modified by a palladium hexacyanoferrate film, synthesized by a simple electroless procedure. J Electroanal Chem 523:26–33

    CAS  Google Scholar 

  8. Lezna RO, Romagnoli R, De Tacconi NR, Rajeshwar K (2003) Spectroelectrochemistry of palladium hexacyanoferrate films on platinum substrates. J Electroanal Chem 544:101–106

    CAS  Google Scholar 

  9. Wang Y, Zhu G, Wang E (1997) Electrochemical quartz crystal microbalance study for vanadium hexacyanoferrates: monitoring of film growth and ion effects during redox reactions. J Electroanal Chem 430:127–132

    CAS  Google Scholar 

  10. Kasem K, Steldt FR, Miller TJ, Zimmerman AN (2003) Electrochemical synthesis of zeolite-like ruthenium-based hexacyanometalates multi-film assemblies. Microporous Mesoporous Mater 66:133–141

    CAS  Google Scholar 

  11. Xun Z, Cai C, Xing W, Lu T (2003) Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method. J Electroanal Chem 545:19–27

    CAS  Google Scholar 

  12. Bácskai J, Martinusz K, Czirók E, Inzelt G, Kulesza P, Malik M (1995) Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux / storage during redox reactions. J Electroanal Chem 385(385):241–248

    Google Scholar 

  13. Eftekhari A (2002) Electrochemical behavior and electrocatalytic activity of a zinc hexacyanoferrate film directly modified electrode. J Electroanal Chem 537:59–66

    CAS  Google Scholar 

  14. Pournaghi-Azar MH, Nahalparvari H (2005) Zinc hexacyanoferrate film as an effective protecting layer in two-step and one-step electropolymerization of pyrrole on zinc substrate. Electrochim Acta 50:2107–2115

    CAS  Google Scholar 

  15. Razmi H, Heidari H (2009) Nafion / lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L -cysteine. Anal Biochem 388(1):15–22

    CAS  PubMed  Google Scholar 

  16. Sheng Q, Yu H, Zheng J (2007) Sol – gel derived terbium hexacyanoferrate modified carbon ceramic electrode : electrochemical behavior and its electrocatalytical oxidation of ascorbic acid. J Electroanal Chem 606:39–46

    CAS  Google Scholar 

  17. Zheng J, Sheng Q, Li L, Shen Y (2007) Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine. J Electroanal Chem 611:155–161

    CAS  Google Scholar 

  18. Yu H, Sheng QL, Bin ZJ (2007) Preparation, electrochemical behavior and performance of gallium hexacyanoferrate as electrocatalyst of H 2 O 2. Electrochim Acta 52:4403–4410

    CAS  Google Scholar 

  19. Wu P, Cai C (2005) The solid state electrochemistry of dysprosium (III) hexacyanoferrate (II). Electroanalysis 17:1583–1588

  20. Pournaghi-Azar MH, Saadatirad A (2009) Oxidation pathways and kinetics of morphine in acidic and neutral media on the aluminum electrode covered by metallic palladium and modified by Prussian blue. J Solid State Electrochem 13:1233–1239

    CAS  Google Scholar 

  21. Wu P, Cai C (2004) The solid state electrochemistry of samarium (III) hexacyanoferrate (II). J Solid State Electrochem 8:538–543

    CAS  Google Scholar 

  22. Zhang Y, Sun X, Zhu L, Shen H, Jia N (2011) Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode. Electrochim Acta 56:1239–1245

    CAS  Google Scholar 

  23. Senthil Kumar SM, Chandrasekara Pillai K (2009) A kinetic study of the electrocatalytic oxidation of reduced glutathione at Prussian blue film-modified electrode using rotating-disc electrode voltammetry. Electrochim Acta 54:7374–7381

    CAS  Google Scholar 

  24. Bai X, Chen G, Shiu KK (2013) Electrochemical biosensor based on reduced graphene oxide modified electrode with Prussian blue and poly(toluidine blue O) coating. Electrochim Acta 89:454–460

    CAS  Google Scholar 

  25. Zamponi S, Berrettoni M, Kulesza PJ, Miecznikowski K, Malik MA, Makowski O, Marassi R (2003) Influence of experimental conditions on electrochemical behavior of Prussian blue type nickel hexacyanoferrate film. Electrochim Acta 48:4261–4269

    CAS  Google Scholar 

  26. Baioni AP, Vidotti M, Fiorito PA, Ponzio EA, De Torresi SIC (2007) Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 23(12):6796–6800

    CAS  PubMed  Google Scholar 

  27. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42(7):2555–2567

    CAS  PubMed  Google Scholar 

  28. Dornellas RM, Franchini RAA, Da Silva AR, Matos RC, Aucelio RQ (2013) Determination of the fungicide kresoxim-methyl in grape juices using square-wave voltammetry and a boron-doped diamond electrode. J Electroanal Chem 708:46–53

    CAS  Google Scholar 

  29. Hanawa A, Asai K, Ogata G, Hibino H, Einaga Y (2018) Electrochemical measurement of lamotrigine using boron-doped diamond electrodes. Electrochim Acta 271:35–40

    CAS  Google Scholar 

  30. Jiwanti PK, Natsui K, Nakata K, Einaga Y (2018) The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochim Acta 266:414–419

    CAS  Google Scholar 

  31. Dragoe D, Spǎtaru N, Kawasaki R, Manivannan A, Spǎtaru T, Tryk DA, Fujishima A (2006) Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry. Electrochim Acta 51:2437–2441

    CAS  Google Scholar 

  32. Cai CX, Xue KH, Xu SM (2000) Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation. J Electroanal Chem 486:111–118

    CAS  Google Scholar 

  33. Scharf U, Grabner EW (1996) Electrocatalytic oxidation of hydrazine at a Prussian blue-modified glassy carbon electrode. Electrochim Acta 41:233–239

    CAS  Google Scholar 

  34. Yang M, Jiang J, Yang Y, Chen X, Shen G, Yu R (2006) Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens Bioelectron 21(9):1791–1797

    CAS  PubMed  Google Scholar 

  35. Kennedy B, Dillon E, Mills PJ, Ziegler MG (2001) Catecholamines in human saliva. Life Sci 69(1):87–99

    CAS  PubMed  Google Scholar 

  36. Beerda B, Schilder MBH, Janssen NSCRM, Mol JA (1996) The use of saliva cortisol, urinary cortisol, and cateoholamine measurements for a noninvasive assessment of stress responses in dogs. Horm Behav 30(3):272–279

    CAS  PubMed  Google Scholar 

  37. Taei M, Jamshidi M (2014) Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly ( Adizol Black B ) -modified glassy carbon electrode. J Solid State Electrochem 18:673–683

    CAS  Google Scholar 

  38. Kang J, Zhuo L, Lu X, Wang X (2005) Electrochemical behavior of dopamine at a quercetin-SAM-modified gold electrode and analytical application. J Solid State Electrochem 9:114–120

    CAS  Google Scholar 

  39. Tsierkezos NG, Ritter U (2012) Oxidation of dopamine on multi-walled carbon nanotubes. J Solid State Electrochem 16:2217–2226

    CAS  Google Scholar 

  40. Mallesha M, Manjunatha R, Suresh GS, Melo JS, D’Souza SF, Venkatesha TV (2012) Direct electrochemical non-enzymatic assay of glucose using functionalized graphene. J Solid State Electrochem 16:2675–2681

    CAS  Google Scholar 

  41. Jin GP, Lin XQ, Ding YF (2006) Glassy carbon electrodes modified with mixed covalent monolayers of choline, glycine, and glutamic acid for the determination of phenolic compounds. J Solid State Electrochem 10:987–994

    CAS  Google Scholar 

  42. Ti CC, Kumar SA, Chen SM (2009) Electrochemical preparation, characterization, and electrocatalytic studies of Nafion-ruthenium oxide modified glassy carbon electrode. J Solid State Electrochem 13:397–406

    CAS  Google Scholar 

  43. Li NB, Ren W, Luo HQ (2008) Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly(caffeic acid)-modified glassy carbon electrode. J Solid State Electrochem 12:693–699

    CAS  Google Scholar 

  44. Ardakani MM, Talebi A, Naeimi H, Barzoky MN, Taghavinia N (2009) Fabrication of modified TiO 2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and l-cysteine. J Solid State Electrochem 13:1433–1440

    CAS  Google Scholar 

  45. Zhang L, Wang L (2013) Poly(2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole) film modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite. J Solid State Electrochem 17:691–700

    CAS  Google Scholar 

  46. Shieh YT, Lu YT, Wang TL, Yang CH, Lin RH (2014) Electrocatalytic activities of Nafion/CdSe/self-doped polyaniline composites to dopamine, uric acid, and ascorbic acid. J Solid State Electrochem 18:975–984

    CAS  Google Scholar 

  47. Yang S, Li G, Yang R, Xia M, Qu L (2011) Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode. J Solid State Electrochem 15:1909–1918

    CAS  Google Scholar 

  48. Zhang L, Shi Z, Lang Q (2011) Fabrication of poly(orthanilic acid)-multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15:801–809

    CAS  Google Scholar 

  49. Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 653(1):1–22

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Takai N, Yamaguchi M, Aragaki T, Eto K, Uchihashi K, Nishikawa Y (2004) Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch Oral Biol 49(12):963–968

    CAS  PubMed  Google Scholar 

  51. Rocha DP, Dornellas RM, Cardoso RM, Narciso LCD, Silva MNT, Nossol E, Richter EM, Munoz RAA (2018) Chemically versus electrochemically reduced graphene oxide: improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces. Sensors Actuators B Chem 254:701–708

    CAS  Google Scholar 

  52. Pedrotti JJ, Angnes L, Gutz IGR (1996) Miniaturized reference electrodes with microporous polymer junctions. Electroanalysis 8:673–675

    Google Scholar 

  53. Cardoso RM, Mendonça DMH, Silva WP, Silva MNT, Nossol E, da Silva RAB, Richter EM, Muñoz RAA (2018) 3D printing for electroanalysis: from multiuse electrochemical cells to sensors. Anal Chim Acta 1033:49–57

    CAS  PubMed  Google Scholar 

  54. Wang J, Taha Z (1991) Batch injection analysis. Anal Chem 63:1053–1056

    CAS  Google Scholar 

  55. Shiba F, Fujishiro R, Kojima T, Okawa Y (2012) Preparation of monodisperse cobalt(II) hexacyanoferrate(III) nanoparticles using cobalt ions released from a citrate complex. J Phys Chem C 116:3394–3399

    CAS  Google Scholar 

  56. Saranya S, Jency Feminus J, Geetha B, Deepa PN (2019) Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCF/rGO–modified electrode. Ionics (Kiel) 25:5537–5550

    Google Scholar 

  57. Chapman KW, Chupas PJ, Kepert CJ (2006) Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). J Am Chem Soc 128(21):7009–7014

    CAS  PubMed  Google Scholar 

  58. Barsan MM, Butler IS, Fitzpatrick J, Gilson DFR (2011) High-pressure studies of the micro-Raman spectra of iron cyanide complexes: Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O). J Raman Spectrosc 42:1820–1824

    CAS  Google Scholar 

  59. Zhao J, Zhang Y, Shi C, Chen H (2006) Electrochemical deposition of Prussian blue on hydrogen terminated silicon ( 111 ). Thin Solid Films 515:1847–1850

    CAS  Google Scholar 

  60. Mažeikien R, Niaura G, Malinauskas A (2011) Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrode: an in situ Raman spectroelectrochemical study. J Electroanal Chem 660:140–146

    Google Scholar 

  61. Necas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188

    Google Scholar 

  62. Thakur B, Bernalte E, Smith J, Linton P, Sawant S, Banks C, Foster C (2016) The mediatorless electroanalytical sensing of sulfide utilizing unmodified graphitic electrode materials. C 2:1–11

    Google Scholar 

  63. Ciolkowski EL, Maness KM, Cahill PS, Wightman RM, Evans DH, Fosset B, Amatore C (1994) Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes. Anal Chem 66:3611–3617

    CAS  Google Scholar 

  64. Ciolkowski EL, Cooper BR, Jankowski JA, Jorgenson JW, Wightman RM (1992) Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaffin cells. J Am Chem Soc 114:2815–2821

    CAS  Google Scholar 

  65. Amatore C, Saveant JM (1978) Do ECE mechanisms occur in conditions where they could be characterized by electrochemical kinetic techniques? J Electroanal Chem 86:227–232

    CAS  Google Scholar 

  66. Amatore C, Gareil M, Savéant JM (1983) Homogeneous vs. heterogeneous electron transfer in electrochemical reactions. Application to the electrohydrogenation of anthracene and related reactions. J Electroanal Chem 147:1–38

    CAS  Google Scholar 

  67. Wei M, Sun LG, Xie ZY, Zhii JF, Fujishima A, Einaga Y, Fu DG, Wang XM, Gu ZZ (2008) Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids. Adv Funct Mater 18:1414–1421

    CAS  Google Scholar 

  68. Guo-Hua Z, Ming-Fang L, Ming-Li L (2007) Differential pulse voltammetric determination of dopamine with the coexistence of ascorbic acid on boron-doped diamond surface. Cent Eur J Chem 5:1114–1123

    Google Scholar 

  69. Lete C, Teodorescu F, Marina M (2013) Determination of dopamine and ascorbic âcid using boron doped diamond microelectrode arrays. Rev Chim 64:540–544

    CAS  Google Scholar 

  70. Song MJ, Lee SK, Kim JH, Lim DS (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28(6):583–587

    CAS  PubMed  Google Scholar 

  71. Roy PR, Saha MS, Okajima T, Park SG, Fujishima A, Ohsaka T (2004) Selective detection of dopamine and its metabolite, DOPAC, in the presence of ascorbic acid using diamond electrode modified by the polymer film. Electroanalysis 16:1777–1784

    CAS  Google Scholar 

  72. Weng J, Xue J, Wang J, Ye JS, Cui H, Sheu FS, Zhang Q (2005) Gold-cluster sensors formed electrochemically at boron-doped-diamond electrodes: detection of dopamine in the presence of ascorbic acid and thiols. Adv Funct Mater 15:639–647

    CAS  Google Scholar 

  73. Dincer C, Ktaich R, Laubender E, Hees JJ, Kieninger J, Nebel CE, Heinze J, Urban GA (2015) Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection. Electrochim Acta 185:101–106

    CAS  Google Scholar 

Download references

Funding

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (E-26/202.790/2015, E-26/010.000978/2019, and E-26/010.001550/2019) for all the support. This study was also supported, in part, by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael M. Dornellas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimaraes, G.A.A., Lacerda, J.N., Xing, Y. et al. Development and application of electrochemical sensor of boron-doped diamond (BDD) modified by drop casting with tin hexacyanoferrate. J Solid State Electrochem 24, 1769–1779 (2020). https://doi.org/10.1007/s10008-020-04558-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04558-6

Keywords

Navigation