Skip to main content

Advertisement

Log in

Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is a major cause of deaths by a single infectious agent and has now been a global public health problem due to increasing numbers of drug-resistant cases. Early and effective treatment is crucial to prevent the emergence of drug-resistance strains. This demands the availability of fast and reliable point-of-care (POC) diagnostic methods for effective case management. Commonly used methods to screen and diagnose TB are clinical, immunological, microscopy, radiography, and bacterial culture. In addition, recent advances in molecular diagnostic methods including MTBDRplus, loop-mediated isothermal amplification (LAMP), line probe assay (LPA), GeneXpert, and whole genome sequencing (WGS) have been employed to diagnose and characterize TB. These methods can simultaneously identify Mycobacterium tuberculosis (MTB) and mutation(s) associated with routinely used anti-TB drugs. Here, we review the use of currently available diagnostic methods and strategies including conventional to recently implemented next-generation sequencing (NGS) methods used to detect MTB in clinical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Source WHO’s global tuberculosis control report [83], 2012. (Color figure online)

Fig. 3

Similar content being viewed by others

References

  1. Barry CE III et al (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7(12):845–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO (2017) World Health Organization. Global Tuberculosis Report 2017. WHO, Geneva

  3. Raviglione M, Sulis G (2016) Tuberculosis 2015: burden, challenges and strategy for control and elimination. Infect Dis Rep 8(2):6570

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sanchez-Padilla E et al (2015) Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med 372(12):1181–1182

    Article  CAS  PubMed  Google Scholar 

  5. WHO (2016) Tuberculosis diagnostics. WHO, Geneva

    Google Scholar 

  6. WHO (2018) Tuberculosis policy statements. WHO, Geneva

    Google Scholar 

  7. WHO (2013) Systematic screening for active tuberculosis: principles and recommendations. WHO, Geneva

    Google Scholar 

  8. CDC (2016) Testing for tuberculosis. CDC, Atlanta

    Google Scholar 

  9. CDC (2009) Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep 58(1):7–10

    Google Scholar 

  10. Sulis G et al (2016) Recent developments in the diagnosis and management of tuberculosis. NPJ Prim Care Respir Med 26:16078

    Article  PubMed  PubMed Central  Google Scholar 

  11. McMurray DN (2001) Baron's medical microbiology textbook (online textbook) Galveston: University of Texas Medical Branch

  12. Enarson DA, Rieder HL, Arnadottir T, Trébucq A (2000) Management of tuberculosis: a guide for low income countries. International Union Against Tuberculosis and Lung Disease

  13. Golden MP, Vikram HR (2005) Extrapulmonary tuberculosis: an overview. Am Fam Physician 72(9):1761–1768

    PubMed  Google Scholar 

  14. Bloom BR (1994) Tuberculosis—Pathogenesis, Pathogenesis, Protection and Control. American Society for Microbiology, Washington DC

    Book  Google Scholar 

  15. Check W (2017) Latest TB testing guide set forth by ATS, CDC, IDSA CAP Today

  16. Grange JM (1990) Tuberculosis: Topley and Wilson's Principle of bacteriology, virology and immunity, vol II, 8th edn. Butler and Tanner Ltd, London, pp 93–118

  17. WHO (2011) Same-day diagnosis of tuberculosis by microscopy: WHO policy statement. WHO, Geneva

    Google Scholar 

  18. Chonde T, Cruz R, Kantor IND, Jain NK, Laszlo A, Latini O, Urbanczik R, Wright P (2000) International course on the management of tuberculosis laboratory networks in low-income countries. International Union Against Tuberculosis and Lung Disease World Health Organization (WHO), Health Canada

  19. WHO (2000) Stopping tuberculosis. World Health Organization. Regional Office for South - East Asia, New Delhi

    Google Scholar 

  20. Akhtar M, Bretzel G, Boulahbal F, Dawson D, Fattorini L, Feldmann K, Frieden T, Havelková M, Kantor IN, Kim SJ, Küchler R, Lamothe F, Laszlo A, Casabona NM, McDougall AC, Miörner H, Orefici G, Paramasivan CN, Pattyn SR, Reniero A, Rieder HL, Ridderhof J, Rüsch-Gerdes S, Siddiqi SH, Spinaci S, Urbanczik R, Vincent V, Weyer K (2000) Technical Guide: Sputum examination for tuberculosis by direct microscopy in low income countries, 5th edn. International Union Against Tuberculosis and Lung Disease, Paris

    Google Scholar 

  21. Mase SR et al (2007) Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis 11(5):485–495

    CAS  PubMed  Google Scholar 

  22. Datta S et al (2017) Comparison of sputum collection methods for tuberculosis diagnosis: a systematic review and pairwise and network meta-analysis. Lancet Glob Health 5(8):e760–e771

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kox LFF (1996) Diagnosis of tuberculosis and other mycobacterioses: development and clinical evaluation of PCR assays. A thesis of Department of Biomedical Research, Royal Tropical Institute, Amsterdam and the Division of Pulmonary Diseases, Academic Medical Centre, Amsterdam

  24. Sepkowitz KA et al (1995) Tuberculosis in the AIDS era. Clin Microbiol Rev 8(2):180–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. David H (1976) Bacteriology of the mycobacterioses. USDHEW, CDC, Atlanta, USA

    Google Scholar 

  26. Watt B, Rayner A, Harris G (1996) Mackie and McCartney practical medical microbiology, 4th edn. International Student Edition. Churchill Livingstone, Edinburgh

  27. Forbes BA, Sahm DF, Weissfeld AS (2000) Bailey and Scott’s Diagnostic Microbiology, 10th edn. Mosby, St. Louis

    Google Scholar 

  28. WHO (2007) Use of Liquid TB Culture and Drug Susceptibility Testing in Low and Medium Income Settings. WHO, Geneva

    Google Scholar 

  29. Zhao P et al (2016) Evaluation of a liquid culture system in the detection of mycobacteria at an antituberculosis institution in China; a retrospective study. J Int Med Res 44(5):1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cruciani M et al (2004) Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J Clin Microbiol 42(5):2321–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chien HP et al (2000) Comparison of the BACTEC MGIT 960 with Löwenstein–Jensen medium for recovery of mycobacteria from clinical specimens. Int J Tuberc Lung Dis 4(9):866–870

    CAS  PubMed  Google Scholar 

  32. Giampaglia CMS et al (2007) Multicentre evaluation of an automated BACTEC 960 system for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 11(9):986–991

    CAS  PubMed  Google Scholar 

  33. Titus K (2018) TB testing: new approaches to old scourge. CAP Today

  34. Gholoobi A et al (2014) Comparison of culture and PCR methods for diagnosis of mycobacterium tuberculosis in different clinical specimens. Jundishapur J Microbiol 7(2):e8939

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zaczek A et al (2014) Comparison of ligation-mediated PCR methods in differentiation of Mycobacterium tuberculosis strains. Biomed Res Int 2014:782071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nimesh M et al (2013) Comparative study of diagnostic accuracy of established PCR assays and in-house developed sdaA PCR method for detection of Mycobacterium tuberculosis in symptomatic patients with pulmonary tuberculosis. J Infect 67(5):399–407

    Article  PubMed  Google Scholar 

  37. Scherer LC et al (2011) Comparison of two laboratory-developed PCR methods for the diagnosis of pulmonary tuberculosis in Brazilian patients with and without HIV infection. BMC Pulm Med 11:15

    Article  PubMed  PubMed Central  Google Scholar 

  38. WHO (2016) The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. WHO, Geneva

    Google Scholar 

  39. Notomi T et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boehme CC et al (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45(6):1936–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pandey BD et al (2008) Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol 57(Pt 4):439–443

    Article  CAS  PubMed  Google Scholar 

  42. WHO (2008) Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis. WHO, Geneva

    Google Scholar 

  43. Rossau R et al (1997) Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother 41(10):2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crudu V et al (2012) First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances. J Clin Microbiol 50(4):1264–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nathavitharana RR et al (2017) Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. The European respiratory journal 49(1):1601075

    Article  PubMed  PubMed Central  Google Scholar 

  46. WHO (2016) The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. WHO, Geneva

    Google Scholar 

  47. Lawn SD, Nicol MP (2011) Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 6(9):1067–1082

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pinto LM, Udwadia ZF (2013) Xpert MTB/RIF and pulmonary tuberculosis: time to delve deeper? Thorax 68(11):987–988

    Article  PubMed  Google Scholar 

  49. Boehme CC et al (2011) Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377(9776):1495–1505

    Article  PubMed  PubMed Central  Google Scholar 

  50. Helb D et al (2010) Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48(1):229–237

    Article  CAS  PubMed  Google Scholar 

  51. Boehme CC et al (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363(11):1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li S et al (2017) Diagnostic accuracy of Xpert MTB/RIF for tuberculosis detection in different regions with different endemic burden: a systematic review and meta-analysis. PLoS ONE 12(7):e0180725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sohn H et al (2014) Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. Clin Infect Dis 58(7):970–976

    Article  PubMed  Google Scholar 

  54. Arend SM, van Soolingen D (2018) Performance of Xpert MTB/RIF Ultra: a matter of dead or alive. Lancet Infect Dis 18(1):8–10

    Article  PubMed  Google Scholar 

  55. Smith SE et al (2012) Global isoniazid resistance patterns in rifampin-resistant and rifampin-susceptible tuberculosis. Int J Tuberc Lung Dis 16(2):203–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fasih N et al (2012) High Isoniazid resistance rates in rifampicin susceptible Mycobacterium tuberculosis pulmonary isolates from Pakistan. PLoS ONE 7(11):e50551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwarze K et al (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20(10):1122–1130

    Article  PubMed  Google Scholar 

  58. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941

    Article  CAS  PubMed  Google Scholar 

  59. Votintseva AA et al (2017) Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol 55(5):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Witney AA et al (2015) Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases. J Clin Microbiol 53(5):1473–1483

    Article  PubMed  PubMed Central  Google Scholar 

  61. Amlerova J, Bitar I, Hrabak J (2018) Genotyping of Mycobacterium tuberculosis using whole genome sequencing. Folia Microbiol 63(5):537–545

    Article  CAS  Google Scholar 

  62. Guthrie JL et al (2018) Genotyping and whole-genome sequencing to identify tuberculosis transmission to pediatric Patients in British Columbia, Canada, 2005–2014. J Infect Dis 218(7):1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gautam SS et al (2018) Molecular epidemiology of tuberculosis in Tasmania and genomic characterisation of its first known multi-drug resistant case. PLoS ONE 13(2):e0192351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wells WA et al (2013) Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect Dis 13(5):449–458

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ocheretina O et al (2014) Correlation between genotypic and phenotypic testing for resistance to rifampin in Mycobacterium tuberculosis clinical isolates in Haiti: investigation of cases with discrepant susceptibility results. PLoS ONE 9(3):e90569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bloemberg GV, Gagneux S, Böttger EC (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373(20):1986–1988

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pankhurst LJ et al (2016) Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 4(1):49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brown AC et al (2015) Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 53(7):2230–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Doughty EL et al (2014) Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer. Peer J 2:e585

    Article  PubMed  CAS  Google Scholar 

  70. Feuerriegel S et al (2015) PhyResSE: a web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol 53(6):1908–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coll F et al (2015) Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med 7(1):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sekizuka T et al (2015) TGS-TB: total genotyping solution for Mycobacterium tuberculosis using short-read whole-genome sequencing. PLoS ONE 10(11):e0142951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bradley P et al (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee RS, Pai M (2017) Real-time sequencing of Mycobacterium tuberculosis: are we there yet? J Clin Microbiol 55(5):1249–1254

    Article  PubMed  PubMed Central  Google Scholar 

  75. WHO (2018) Global Tuberculosis Report. WHO, Geneva

    Google Scholar 

  76. Lewinsohn DM et al (2017) Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis 64(2):e1–e33

    Article  PubMed  Google Scholar 

  77. Sethi S, Nanda R, Chakraborty T (2013) Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 26(3):462–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coronel Teixeira R et al (2017) The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J Infect 75(5):441–447

    Article  PubMed  Google Scholar 

  79. WHO (2019) Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. WHO, Geneva

    Google Scholar 

  80. WHO (2019) Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. WHO, Geneva

    Google Scholar 

  81. Nikam C et al (2013) Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: a near-care approach. PLoS ONE 8(1):e51121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pai M et al (2016) Tuberculosis. Nat Rev Dis Primers 2:16076

    Article  PubMed  Google Scholar 

  83. WHO (2012) Global tuberculosis control report. WHO, Geneva

    Google Scholar 

Download references

Acknowledgements

This paper was solely written by the contributing authors without any financial or other support with the organization they are affiliated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwa Sapkota.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, B., Acharya, A., Gautam, S. et al. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep 47, 4065–4075 (2020). https://doi.org/10.1007/s11033-020-05413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05413-7

Keywords

Navigation